X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

氧化锆氧量分析仪的工作原理 分析仪技术指标

时间:2020-07-29    来源:仪多多仪器网    作者:仪多多商城     
自然界的氧化锆(ZrO2)矿物原料,主要有斜锆石和锆英石。锆英石系火成岩深层矿物,颜色有淡黄、棕黄、黄绿等,比重4.6-4.7,硬度7.5,具有强烈的金属光泽。纯的氧化锆是一种高级耐火原料,其熔融温度约为2900℃。

纯净的氧化锆是白色固体,含有杂质时会显现灰色或淡黄色,添加显色剂还可显示各种其它颜色。纯氧化锆的分子量为123.22,理论密度是5.89g/cm3,熔点为2715℃。氧化锆有三种晶体形态:单斜、四方、立方晶相。常温下氧化锆只以单斜相出现,加热到1100℃左右转变为四方相,加热到更高温度会转化为立方相。由于在单斜相向四方相转变的时候会产生较大的体积变化,冷却的时候又会向相反的方向发生较大的体积变化,容易造成产品的开裂,限制了纯氧化锆在高温领域的应用。但是添加稳定剂以后,四方相可以在常温下稳定,因此在加热以后不会发生体积的突变,大大拓展了氧化锆的应用范围。

由于氧化锆材料具有高硬度,高强度,高韧性,极高的耐磨性及耐化学腐蚀性等等优良的物化性能,氧化锆已经在陶瓷、耐火材料、机械、电子、光学、航空航天、生物、化学等等各种领域获得广泛的应用。

1989年能斯特(Nernst)发现稳定氧化锆在高温下呈现的离子导电现象。从此氧化锆成为研究和开发应用较为普遍的一种固体电解质,它已在高温技术,特别是高温测试技术上得到广泛应用。由于氧探头与现有测氧仪表(如磁氧分析器、电化学式氧量计、气象色谱仪等)相比,具有结构简单,响应时间短(0.1s~0.2s),测量范围宽(从ppm到百分含量),使用温度高(600℃~1200℃),运行可靠,安装方便,维护量小等优点,因此在冶金、化工、电力、陶瓷、汽车、环保等工业部门得到广泛的应用。

氧化锆氧探头的测氧原理

氧化锆的导电机理:电解质溶液靠离子导电,具有离子导电性质的固体物质称为固体电解质。固体电解质是离子晶体结构,靠空穴使离子运动导电,与P型半导体空穴导电的机理相似。

纯氧化锆(ZrO2)不导电,掺杂一定比例的低价金属物作为稳定剂,如氧化钙(CaO2)、氧化镁(MgO)、氧化钇(Y2O3),就具有高温导电性,成为氧化锆固体电解质。

为什么加入稳定剂后,氧化锆就会具有很高的离子导电性呢?

这是因为,掺有少量CaO2 的ZrO2混合物,在结晶过程中,钙离子进入立方晶体中,置换了锆离子。由于锆离子是+4价,而钙离子是+2价,一个钙离子进入晶体,只带入了一个氧离子,而被置换出来的锆离子带出了两个氧离子,结果,在晶体中便留下了一个氧离子空穴。例如:(ZrO2)0.85 (CaO2)0.15这样的氧化锆(氧化锆的摩尔分数为85%、氧化钙的摩尔分数是15%),则具有7。5%的摩尔分数的氧离子空穴,是成了一种良好的氧离子固体电解质。


氧化锆的导电机理

在一个高致密的氧化锆固体电解质的两侧,用烧结的方法制成几微米到几十微米厚的多孔铂层作为电极,再在电极上焊上铂丝作为引线,就构成了氧浓差电池,如果电池左侧通入参比气体(空气),其氧分压为p0;电池右侧通入被测气体,其氧分压为p1(未知)。

设p0 > p1,在高温下(650…850℃),氧就会从分压大的p0一侧向分压小的p1侧扩散,这种扩散,不是氧分子透过氧化锆从P0侧到P1侧,而是氧分子离解成氧离子后,通过氧化锆的过程。

在750℃左右的高温中,在铂电极的催化作用下,在电池的P0侧发生还原反应,一个氧分子从铂电极取得4个电子,变成两个氧离子(O2-)进入电解质,即:O2(P0)+ 4e →2O2-
P0侧铂电极由于大量给出电子而带正电,成为氧浓差电池的正极或阳极。

这些氧离子进入电解质后,通过晶体中的空穴向前运动到达右侧的铂电极,在电池的P1侧发生氧化反应,氧离子在铂电极上释放电子并结合成氧分子析出,即:2O2- - 4e →O2(P1)

P1侧铂电极由于大量得到电子而带负电,成为氧浓差电池的负极或阴极。

这样在两个电极上,由于正负电荷的堆积而形成一个电势,称之为氧浓差电动势。当用导线将两个电极连成电路时,负极上的电子就会通过外电路流到正极,再供给氧分子形成离子,电路中就有电流通过。氧浓差电动势的大小,与氧化锆固体电解质两侧气体中的氧浓度有关。

氧化锆氧传感器工作原理

在氧化锆电解质(ZrO2管)的两侧面分别烧结上多孔铂(Pt)电极,测量电池本体分为3层:铂(电极)─氧化锆(电解质)─铂(电极)。铂电极是多孔性的。烟道气体通过过滤器或校验气体通过传导管进入测量电池被测气体一侧,而另一侧为参比空气(含氧20.60%)。

两种含氧浓度不同的气体作用在测量电池,便产生一个以对数为规律的电势(两侧的氧浓度差愈大, 电势信号愈大)。毫伏信号经氧分析仪转换成0—10mA或4-20mA标准电流。此电流由氧分析仪接线端子输出。

测量电池的工作温度设置为高于650℃的恒定温度, 为了保持工作温度恒定,用一支K型热电偶测量电池的工作温度,经氧分析仪内的温度控制器调节加热器的加热电压。


氧化锆氧传感器示意图

当测量烟气温度高于700℃时,传感器组成中省去加热器和测温热电偶。

在理想状态下,当被测烟气与参比气浓度一样时, 其输出电势E值为 0 mV, 但在实际应用中,锆管实际条件和现场情况均不是理想状态。 故事实上的锆管是偏离此值的。实际上,一定氧含量锆管输出的电势为理论值和本底电势的和,我们称为无浓差条件下锆管输出的电势值为本底电势或称为零位电势,此值的大小又在不同温度下呈不同的值, 并且随锆管使用期延长而变化。 因此, 如不对此情况处理,会严重影响整套测氧仪的准确和探头寿命。

氧化锆氧量分析仪的结构及种类

氧化锆氧量分析仪的构成是由氧传感器(又称氧探头、氧检测器)、氧分析仪(又称变送器、变送单元、转换器、分析仪)以及防尘装置、热电偶、加热器、标准气体导管、接线盒以及外壳壳体等组成。

防尘装置由防尘罩和过滤器组成,能防止烟气中的灰尘进入氧化锆锆管内部,使锆管元件免受污染,并能起到缓冲气样作用。

氧化锆管元件是氧探头的核心部件,由它产生氧浓差电势信号。氧化锆管是陶瓷类金属氧化物,使用时必须避免剧烈震动,以免损坏锆管元件。

热电偶是探头内置加热器恒温控制之用,也是测量锅炉、窑炉烟道中被测气体的温度的元件,为氧量计算提供一个温度信号。

加热器的作用是提供氧化锆固体电解质元件正常工作所需的温度,从而使其在低于600℃的被测烟气环境中也能正常工作。

来自氧探头的氧电势信号、热偶温度信号经放大送A/D转换电路,与校正系数一起进行数据处理,即可得出氧含量的百分含量。同时,系统可实行氧电势、探头温度、校正系数值的显示,并对锆管的加热电炉进行恒温控制,且辅以断偶、超温保护、热偶反接保护,确保系统可靠工作。

按检测方式的不同,氧化锆氧探头分为两大类:采样检测式氧探头及直插式氧探头。

采样检测式氧探头

采样检测方式是通过导引管,将被测气体导入氧化锆检测室,再通过加热元件把氧化锆加热到工作温度(750℃以上)。氧化锆一般采用管状,电极采用多孔铂电极。其优点是不受检测气体温度的影响,通过采用不同的导流管可以检测各种温度气体中的氧含量,这种灵活性被运用在许多工业在线检测上。其缺点是反应时间慢;结构复杂,容易影响检测精度;在被检测气体杂质较多时,采样管容易堵塞;多孔铂电极容易受到气体中的硫,砷等的腐蚀以及细小粉尘的堵塞而失效;加热器一般用电炉丝加热,寿命不长。
在被检测气体温度较低(0℃~650℃),或被测气体较清洁时,适宜采样式检测方式,如制氮机测氧,实验室测氧等。

直插检测式氧探头

直插式检测是将氧化锆直接插入高温被测气体,直接检测气体中的氧含量,这种检测方式适宜被检测气体温度在700℃~1150℃时(特殊结构还可以用于1400℃的高温),它利用被测气体的高温使氧化锆达到工作温度,不需另外用加热器。直插式氧探头的技术关键是陶瓷材料的高温密封和电极问题。

由于需要将氧化锆直接插入检测气体中,对氧探头的长度有较高要求,其有效长度在500mm~1000mm左右,特殊的环境长度可达1500mm。且检测精度,工作稳定性和使用寿命都有很高的要求,因此直插式氧探头很难采用传统氧化锆氧探头的整体氧化锆管状结构,而多采取技术要求较高的氧化锆和氧化铝管连接的结构。密封性能是这种氧化锆氧探头的最关键技术之一。目前国际上先进的连接方式,是将氧化锆与氧化铝管永久的焊接在一起,其密封性能极佳,与采样式检测方式比,直插式检测有显而易见的优点:氧化锆直接接触气体,检测精度高,反应速度快,维护量较小。    多参数水质分析仪适用于:
  1、水源地监测、环保监测站,市政水处理过程,市政管网水质监督,农村自来水监控;
  2、适用于循环冷却水、泳池水运行管理、工业水源循环利用、工厂化水产养殖。
  为了保护水环境,必须加强对污水排放的监测。检测点的设计和检测仪表(主要是多参数水质分析仪)的质量对水环境监测起着至关重要的作用。用化学和物理方法测定水中各种化学成分的含量。多参数水质分析仪分为简分析、全分析和专项分析三种。
  多参数水质分析仪用途:
  饮用水主要考虑对人体健康的影响,其水质标准除有物理指标、化学指标外,还有微生物指标;对工业用水则考虑是否影响产品质量或易于损害容器及管道。可以广泛应用于发电厂、纯净水厂、自来水厂、生活污水处理厂、饮料厂、环保部门、工业用水、水产业、纺织业、制酒行业及制药行业、防疫部门、医院等部门的各离子参数测定。
  多参数水质分析仪工作原理;
  多参数水质分析仪主要采用离子选择电极测量法来实现检测的。仪器上的电极:PH、氟、钠、钾、钙、镁、和参比电极。每个电极都有一离子选择膜,会与被测样本中相应的离子产生反应,膜是一离子交换器,与离子电荷发生反应而改变了膜电势,就可检测液,样本和膜间的电势。膜两边被检测的两个电势差值会产生电流,样本,参考电极,参考电极液构成"回路"一边,膜,内部电极液,内部电极为另一边。
  内部电极液和样本间的离子浓度差会在工作电极的膜两边产生电化学电压,电压通过高传导性的内部电极引到到放大器,参考电极同样引到放大器的地点。通过检测一个的已知离子浓度的标准溶液获得定标曲线,从而检测样本中的离子浓度。
  溶液中被测离子接触电极时,在离子选择电极基质的含水层内发生离子迁移。迁移的离子的电荷改变存在着电势,因而使膜面间的电位发生变化,在测量电极与参比电极间产生一个电位差。

氮氧化物是大气污染的主要污染物之一,对人体健康有严重危害。因此近年来氮氧化物的监测与治理等研究工作受到社会各界的密切关注。氮氧化物分析仪是基于化学发光法检测技术检测氮氧化物的含量,反应室是整个系统中的核心部件,而臭氧的浓度及纯度等参数也同样对仪器的长期工作性能有重要影响。

 

原理

化学发光法检测技术是基于NO能与O3能发生化学发光反应,且发光光强与NO的浓度成正比,而NO2是通过(钼)转换室转换为NO再进行检测。反应室是NO与O3发生化学发光反应的场所,它的形状和内部结构会影响PMT接收到的光子数,经过电路部分处理后将影响仪器的灵敏度。所以说反应室是整个系统中的核心部件。而臭氧的浓度及纯度等参数也同样对仪器的长期工作性能有重要影响。

故障判断处理

1、压力过高及流量过低报警:泵,漏气

NO的跨度超下警,经过到现场检查发现,仪器有压力过高及流量过低报警,从仪器原理和管路出发,压力和流量都是在同一管路上,当出现抽力不足时流量小压力大,或仪器内部管路有漏气可能。两种情况,用排除方法,先用堵头将采样入口堵住,观察仪器流量是否接近零,如果接近零,说明管路不漏气,如果流量变化不大,说明管路有漏气,先检查管路。在不漏气情况下,检查采样泵,泵抽力不够主要有泵膜脏了、泵膜破了、泵轴承坏了。

泵膜脏情况:泵膜脏,泵膜上面有污垢,上下振动不紧密,抽力不够,用酒精清洗泵膜干燥后安装回去,报警排除。

泵膜坏情况:在拆开泵后,发现泵膜已经出现断裂,更换新泵膜后装回去,流量和压力都正常了。

2、流量过低报警

例行任务检查零点和跨度变化不大,到现场检查发现有流量报警。流量报警是因为通过流量传感器的气流少,未达到设定的流量值面报警,检查流量为何少了。从仪器管路出发,分两部分排除,部分是采样总管到仪器采样入口处,第二部分为仪器内部,这两部分可能有堵塞了,先检查部分,管路无堵塞,过滤器膜也比较干净,不是外部环境堵塞,检查第二部分,气体沿反应室管路走,检查毛细管时,发现毛细管内部黑黑的,正常为玻璃透明的,应该是有灰尘进入毛细管造成堵塞,用酒精浸泡5min后清洗安装回去,流量正常。

3、COOLER温度99℃报警

现场巡检时COOLER温度报警,从理论出发,COOLER是使光电倍增管处于低温环境减少干扰的散热器,温度过高会影响PMT工作。温度高了,有可能是COOLER故障了,或散热不良。先从可以简单处理的入手,先清洗COOLER后面的风扇滤网,使得散热更加好,这时报警排除。

4、COOLER温度-99℃报警

巡检发现COOLER温度-99℃报警,风扇滤网很干净,用手去摸COOLER的散热片,发现很凉,说 明COOLER没有工作,没有工作可能是因为没有通上电,关机。把连接COOLER接线头拔出,检查线头及线,完好,再将线接回去时,开机显示99℃报警,这个是COOLER温度过高的报警,说明COOLER的传感器经接入,待开机后40min,COOLER工作正常,报警排除,从这可看出,有可能是线头接触不良造成供电不正常,造成报警。

5、无臭氧输出

无臭氧输出,常见的故障:臭氧发生器故障,臭氧发生器高压故障,测量量程故障。跨度检查发现仪器无反应,从原理出发,标气仪器数据基本无变化,可能是臭氧部分出现了问题,无臭氧与NO反应就不能产生光,光电倍增管采集不到光就不能计算转换成NO浓度。产生臭氧的装置是臭氧发生器,查看供电,供电板臭氧供电灯亮,供电正常,将臭氧发生器拆下,发现臭氧发生器放电电极处有严重的生锈现象,正常为光亮的,从管路上去查找,空气经过干燥瓶后来到臭氧流量开关再进入臭氧发生器的,出现生锈很有可能进入大量水气,这时发现干燥瓶里的变色硅胶已经全部变红,失去了干燥功能,水气直接进入臭氧发生器,在高压放电情况下臭氧发生器损坏了。经过更换臭氧发生器后,仪器正常。从这说明了平时的维护硅胶没有及时更换就容易造成仪器的故障。

6、钼炉无法加热

钼转化效率低,发现钼炉温度低报警,钼炉加热灯常亮。加热灯常灯,说明加热控制器正在输出电压,用万用表测量加热丝两端电压,有电压输出,正常,但加不上热,确定就是钼炉内加热器故障。




上一篇:微小型光谱仪在激光波长测量中的...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!