X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

摩托车消声器振动测试 消声器技术指标

时间:2020-07-29    来源:仪多多仪器网    作者:仪多多商城     
摘要:本文采用LMS Test.Lab 测试系统针对某出现疲劳破坏的消声器部件,通过振动测试的方法分析了该部件产生疲劳破坏的主要原因。通过对三种不同方案的振动测试并结合CAE 分析的方法比较了三种设计方案的优劣,为产品设计的改进提供了数据支持。

1 引言

摩托车消声器在当前市场及使用工况下强度达到要求。因为新市场的使用工况有所变化,在道路耐久试验过程中在安装部位出现断裂问题(见图1)。比对两种工况主要差别在于新市场道路情况较恶劣,碎石块类路面较多,而且在新市场主要使用在发动机高转速工况下。

为解决该问题决定对消声器悬挂位置及消声器尾部振动加速度进行测量,两个测点位置见下图:


图 1:消声器断裂部位图

本文中所有测试均在 LMS Test.Lab 系统下完成。Test.Lab 系统是LMS 公司测试及数据后处理的统一平台,该系统功能完善可以满足振动测试的所有需要,且操作条理清晰,按照专家系统的步骤顺序进行即可完成振动数据的测量。该系统有一个亮点即功能非常强大的在线处理能力,当数据采集完成,则需要的结果已经保存于项目中,且采集完成后数据的处理功能也很方便、丰富。在整个测试过程中测试系统采集稳定为试验的顺利完成提供了可靠保障。

2 测试的主要内容及目的

本次测试的主要内容是测试消声器前后测点(见上图)在不同工况下的振动加速度值。

其目的主要是做出以下判断

1)消声器行使过程中的振动原因主要方面是路面激励还是发动机激励。
2)结合模态分析判断行使过程中消声器是否发生共振现象。
3)比较原方案、内外加强方案三种方案在行使过程中振动加速度值的相对大小,从而初步判断三种方案在此工况下的优略。

具体测试工况如下表:

3 测试结果

3.1 测试加速度RMS 值分析

测试中采用三向加速度传感器测量每个测点 X、Y、Z 三个方向的振动加速度信号,将三个方向的信号分别计算RMS 值后合成得到合成RMS 值列入表1:

表 1:三种消声器加速度合成RMS 值列表

根据表1 数据建立以发动机转速为横轴,加速度RMS 值为纵轴曲线图,用以比较三种方
案所分别对应的振动加速度的大小。


图 2:恶劣路面前后测点加速度RMS 值


图 3:铺装路面前后测点加速度RMS 值

从以上 RMS 值分析可以看出路面对消声器两测点的振动加速度幅值影响较小,可以初步判断引起消声器振动的主要因素是发动机的激励。从振动加速度幅值变化趋势上看,内部加强方案对高转速的敏感程度要低一些,超过7000rpm 后,振动加速度的上升趋势变缓。从振动加速度幅值上来看,外部加强方案的振动加速度幅值最低。

3.2 测试加速度频谱分析

对测试加速度时域信号做 FFT,得到其所对应的频谱。通过频谱图可以看出振动的主要频率成分特征,从而判断发动机激励及路面激励分别对消声器振动的贡献量。这里仅列举发动机转速4000rpm 和8000rpm 下前测点(后测点结果类似)Z 方向的振动加速度频谱。


图4:4000rpm 恶劣路Z 方向加速度频谱


图5:8000rpm 恶劣路Z 方向加速度频谱


图6:4000rpm 铺装路Z 方向加速度频谱


图7:8000rpm 铺装路Z 方向加速度频谱

频谱图中可以很明显地看出恶劣路面和铺装路面的区别,主要表现在路面激励引起的低频振动上。恶劣路面频谱图中低频成分比较明显,而铺装路面低频成分几乎不存在。路面激励引起的低频成分相对于发动机激励等引起的高频成分从能量上来说相对较小,尤其当发动机转速较高时表现更明显。发动机转速所对应频率及倍频成分很明显,说明发动机激励是消声器振动进而可能产生疲劳问题的重要原因。当发动机转速达到9000rpm 左右后,发动机转速对应频率及倍频成分引起的振动还是比较明显,但是1000Hz 以上的高频振动成分明显增大,占振动能量的主要部分。

3.3 消声器结构有限元分析

根据消声器结构及实际约束状态计算消声器约束模态和在加速度载荷作用下的应力分布状况。计算结果表明在约束状态下三种消声器方案200Hz 以下都具有3~4 个共振频率存在,所以要想完全避开消声器在使用过程中的共振是非常困难的。强度分析结果显示外部加强的方案2 优于内部加强的方案1 且都明显优于原方案。

4.结论

通过对测试信号的分析可以确定引起消声器产生振动的主要原因是发动机引起的激励,路面激励引起的振动相对较小。三种方案的约束模态在200~300Hz 频率内都存在,当发动机转频或倍频达到该频率时会引起共振,从频谱及RMS 分析结果来看幅值不会放大很多。三种方案都无法完全避开该频率段。当发动机转速达到9000rpm 后,测试结果显示高频(1000Hz以上)振动成分明显增大,对消声器的疲劳很不利。内部加强和外部加强后,消声器振动水平有所下降,从测试结果来看,外部加强的效果可以,振动加速度RMS 值最小。惯性力CAE分析结果显示,加强后应力水平及应力分布状况均有比较明显的改善,其中外部加强效果最明显。综合考虑外部加强方案是三个方案中效果可以的。

由于测试条件限制,发动机转速的稳定性、行使路线的一致性都存在一定误差,所以本次测量的结果存在一定误差。CAE 计算中均采用相同的加速度值载荷边界,基本反映三种方案的振动应力分布状况。考虑到测试RMS 值外部加强方案最小,所以实际中外部加强方案与其他方案的差别还要明显。

参考文献:
[1] 工程振动测试与分析. [M]. 李方泽、刘馥清,高等教育出版社, 1992
[2] 踏板式摩托车振动实验分析. [J]. 李以农、米林、杨城,重庆大学学报,2003-2
[3] LMS 帮助系统



    消声器采用了通孔喷、阻的消声原理。其中以大孔扩容控流代替微孔穿板型,在结构上首先保证安全门排汽必须顺畅的原理;


    多层次穿孔吸声,并结合了阻性消声原理,让蒸汽声波进入多孔吸声材料中的无数小孔内,激发多孔材料分子震动,使声能为了克服摩擦阻力和粘滞力而变成热能,即达到了理想的消声效果,更保证了蒸汽顺利排除。


    消声器使用范围广、消声量大、耐高温高压、不怕水汽及油雾等优点。是建立在我国著名声学家马大猷的小孔喷注消声理论的基础上研制成功,也是目前我国新型结构消声器,各电厂一般都选择使用。


    故吸声频带比普通穿孔板共振吸声结构大得多,一般性能较好的单层或双层微穿孔板吸声结构的吸声频带宽度可以达到6~10个1/3信频程以上。这就是微穿孔板吸声结构最大的特点。





消声器的特点及原理

    消声器采用了通孔喷、阻的消声原理。其中以大孔扩容控流代替微孔穿板型,在结构上首先保证安全门排汽必须顺畅的原理;

    多层次穿孔吸声,并结合了阻性消声原理,让蒸汽声波进入多孔吸声材料中的无数小孔内,激发多孔材料分子震动,使声能为了克服摩擦阻力和粘滞力而变成热能,即达到了理想的消声效果,更保证了蒸汽顺利排除。

    消声器使用范围广、消声量大、耐高温高压、不怕水汽及油雾等优点。是建立在我国著名声学家马大猷的小孔喷注消声理论的基础上研制成功,也是目前我国新型结构消声器,各电厂一般都选择使用。

    故吸声频带比普通穿孔板共振吸声结构大得多,一般性能较好的单层或双层微穿孔板吸声结构的吸声频带宽度可以达到6~10个1/3信频程以上。这就是微穿孔板吸声结构最大的特点。

标签: 消声器
消声器 消声器的特点及原理_消声器

上一篇:智能电磁流量计按电流方式分类 ...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!