X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

噪声放大器 放大器是如何工作的

时间:2020-08-04    来源:仪多多仪器网    作者:仪多多商城     
低噪声放大器是指噪声系数很低的放大器。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。SA-430F3超低噪声差分放大器,400HZ--110MHZ,差分输入,输入阻抗50欧,

晶体管放大器的噪声系数基本上与电路组态无关。但共发射极放大器具有适中的输入电阻,F为最小时的较佳信源电阻Rs和此输入电阻比较接近,输入电路大体上处于匹配状态,增益较大。共基极放大器的输入电阻小,共集电极放大器的输入阻抗高,两者均不易同时满足噪声系数小和放大器增益高的条件,所以都不太适于作放大键前置级之用。为了兼顾低噪声和高增益的要求,常采用共发射极-共基极级联的低噪声放大电路。

示波器探头将示波器的输入连接到要测量的电压节点。传统上,常用的探头分为三种类型:高阻抗无源探头、低容抗传输线探头和有源探头。

较为常见的探头类型是高阻抗无源探头。图1是其简化示意图。该探头使用经补偿的分压器(电阻和电容匹配的分压器)以驱动探头线缆和示波器输入电容。这些探头有500MHz额定带宽,但你应考虑由输入电容所带来的限制。


图1:采用电容和电阻匹配的分压器的高阻无源探头

示波器的输入电容可能在15~25pF之间。同轴电缆每英尺的电容约在10pF~30pF。所以其总电容可能约为80pF。因此,简单地用屏蔽线缆将示波器连接到DUT(被测设备)将会把此电容加载在测量电路。在10MHz时,阻抗约为200Ω,这就可能显著降低你试图测量的电压幅值。

我们可通过使用电容性补偿分压器将被测信号分压10倍的方式来增加此输入阻抗。这种补偿分压器将使探头针尖具有最小9pF的电容、带来10倍衰减,使探头负载阻抗增加了约10倍。增加探头衰减倍数,可进一步降低输入电容,但这样做将降低进入示波器的信号幅值,并使小信号测量变得困难或不可能。在实践中,10倍衰减在信号幅度和加载阻抗之间表现出良好平衡。

但在更高频率,即使是这样的低电容探头也还是太大了。在500MHz,9pF探头电容的等效阻值约35Ω,除最低阻抗电路外,将对所有被测电压产生影响。

若将同轴线缆换为传输线,则可大幅降低输入电容。如果示波器的终端电阻为50Ω,则电缆探头端的阻抗将总是50Ω,与频率无关。可使用分压器加大这一非常低的负载阻抗;一个450Ω串联电阻将把被测电压幅值缩小10倍,并得到500Ω相对恒定的负载阻抗。采用带终端电阻的低电容或传输线探头(图2)。


图2:传输线探头大幅降低输入电容,但它也降低了输入电阻,从而降低了整体阻抗

端接传输线探头的输入电容相当低,典型值最高零点几个pF。这种探头的限制因素是低输入电阻。对10倍衰减探头来说,500Ω的输入电阻,也会对被测电路造成很大影响。

这就使我们自然想到有源探头(图3)。有源探头采用补偿分压器驱动放大器。该放大器的缓冲输出再驱动以其特性阻抗端接(terminated)的同轴电缆,就像传输线探头。该放大器还将探头与电缆的电容性负载和示波器的输入电路隔离开来。


图3:50Ω带缓冲输入驱动的传输线有源探头

有源探头仍需要低输入电容,在探头尖端的小几何形状内,可以容易做到这点。可以设计出输入电容约为4pF的高阻抗缓冲放大器。约10倍衰减的补偿分压器将进一步降低输入电容以及允许更大的输入电压摆幅,其输入电容约为0.4pF。在现实中,放大器需要输入保护装置,此举将加大探头尖端金属的杂散电容,所以0.5pF到4pF的输入电容是比较现实的。

图4显示出上述讨论的三种探头其作为频率函数的输入阻抗(根据特定的输入电阻和电容)。在无源探头500MHz的频率上限,其输入阻抗仅为34Ω。在相同频率:传输线探头的输入阻抗为359Ω;有源探头的为530Ω。该容性阻抗将会加载到被测信号上。


图4:与被动和传输线探头比,有源探头可在最宽的带宽内使输入阻抗最大化

探头影响的案例

图5是一个25Ω系统(50Ω源和负载阻抗)的阶跃波形(step waveform)示例。即使在这样的低阻抗环境下,无源探头容性负载的影响也显而易见。


图5:比较无源探头(PP008)和有源探头(ZS4000)的电容性负载的影响

图5中,在无源探头接触被测信号前,输入阶跃的上升时间约为500ps。当PP008(输入C=9.5pF)触测阶跃被测信号时,上升时间增加至1.8ns,且在前沿造成显著失真。使用ZS4000有源探头(输入C=0.6pF)时,则没对被测信号造成显着失真。

低电容设计的关键是把所有探头尖端周围的导体做得小巧。这也与应使探头尖端的体积尽可能小巧的要求一致,只有这样,探头才能“游刃”于我们日渐拥挤的电路板。

探头尖端的电容性负载除加载被测电压外,还有另一个影响。单端探头需要一个接地连接。该地线有与其长度相关的电感。该电感,与探头的输入电容相组合,将在LC电路(图6)的共振频率上引致振铃效应。


图6:示波器的地线增加了被测电路的电感

接地线电感可使用大拇指规则估算,其值约为20nH/in,进而算出谐振频率。该电感的谐振频率(fr)为:

为使测量不失真,谐振频率应比拟测量信号的频率高得多。可通过使用更短的地线或使用更低输入电容的探头或两者兼而用之的方式来提高共振频率。

作为例子,我们可使用PP008探头(输入C=9.5Pf)、6英寸地线(~120nH)进行陡变阶梯电压的测量。在这些参数下,其振铃频率约为150MHz,可容易地在所测波形上看到。若将同样的接地线与输入电容仅为0.6pF的ZS4000探头一起使用,这时其共振频率约为600MHz且平复要快得多,如图7中所示。


图7. 对比由接地线引入、输入电容的不同值对振铃产生的影响。
输入电容更低的有源探头(ZS4000),不仅回复要快得多,且具有更高频率。

更高带宽的探头配有短的、定长接地导线。用最短的地线配以上述介绍的有源探头使你在测量阶跃电压时几乎没有振铃现象或上升时间失真。使用中的重要注意事项是:不要试图延长这些地线,因其会增加电感和电容并将显著影响探头性能。

再回到我们开始的问题:“为什么有源探头的放大器做在探头尖端,而不在示波器内?”答案是:示波器厂家通过将放大器做在探头尖端附近,可在探头针尖内采用补偿的分压器以增加探头的输入阻抗和输入电压范围。同时,有源探头可以缓冲连接电缆对探头的影响。不使用放大器,使用传输线探头,你仍可得到类似结果,但你必须要能忍受低输入阻抗带来的影响。

德国皮尔磁​伺服放大器在安装、使用、维修、检查前我们一定要充份了解其技术资料及使用说明以及伺服电机资料集和附属的资料,在具有正确使用了解该设备之后使用产品。错误的操作及使用很可能引起机器故障及人身伤害,下面我们针对使用伺服放大器来列一些常规的使用注意事项。

防止触电

●在对伺服放大器进行接线及检修作业时,需先断开电源,待充电指示灯完全熄灭后,利用万用表确认电压后在进行接线及检修。或由专业技术人员进行。以免触电。

●伺服放大器及伺服电机必须切实的做好接地。

●伺服放大器及伺服电机必须在安装好以后才能进行接线,以免触电。

●不要损伤电缆或强拉电缆,更不可以用电缆悬挂重物及挤压电缆,在操作开关时切忌误用潮湿的手进行开关操作,以免触电。

防止火灾

●在安装伺服放大器、伺服电机及再生制动电阻时误用易燃物来安装,以免引起火灾。

●当伺服放大器出现故障时,应切断电源,若让大电流继续通过则可能引起火灾。

●使用再生制动电阻时,如果出现异常信号时应断开电源,由于再生制动晶体管故障,可能导致再生制动电阻异常发热而引起火灾。

防止产品损伤

●各端子的输入电压必须符合技术资料集的规定,否则可能导致端子破裂或损坏,导致端子破裂或损坏还需要避免正负极性及链接端子的错误,这些都有可能引起端子破裂或损坏

●在电源接通和断开后的一段时间内,伺服放大器的散热片、伺服电机及再生制动电阻可能会出现高温,在这里请误用手触摸,以免烫伤。

 

特性一览

  • 伺服放大器,适用于带反馈系统(例如解算器或正余弦编码器(Hiperface、Endat))的电机
  • 同步、异步和线性电机以及其他电机的操作
  • CANopen 接口
  • 定位控制
  • 电子齿轮
  • 紧凑型设计,适用于极小的控制柜
  • I/O 扩展卡槽(现场总线等)

伺服放大器的显著优势

  • 可直接支持市面上流行的所有反馈系统,用于操作广泛的电机技术
  • 得益于先进的伺服技术,您可以灵活地响应版式变化并达到更高的循环计数
  • 扩展的安全功能可提高机器利用率(避免停机)
  • 与安全卡结合使用时安全级别高达PL e(EN/ISO 13849-1),不受反馈系统的限制(PMCprotego D)
  • 智能整流电路支持母线能量共平衡分配,无需外部整流电路支持
  • 从驱动器配置到调试的个性化咨询和客户服务

 

 

如有疑问请点击:德国皮尔磁伺服放大器使用注意事项




上一篇:如何正确选购激光测距仪 激光测...

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!