X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

模拟示波器和数字示波器 数字示波器是如何工作的

时间:2020-08-04    来源:仪多多仪器网    作者:仪多多商城     
一、模拟和数字,各有千秋 

廿世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,带宽100MHz的同步示波器开发成功,这是近代示波器的基础。五十年代半导体和电子计算机的问世,促进电子示波器的带宽达到100MHz。六十年代美国、日本、英国、法国在电子示波器开发方面各有不同的贡献,出现带宽6GHz的取样示波器、带宽6GHz的多功能插件式示波器标志着当时科学技术的高水平,为测试数字电路又增添逻辑示波器和数字波形记录器。模拟示波器从此没有更大的进展,开始让位于数字示波器,英国和法国甚至退出示波器市场,技术以美国比较好,中低档产品由日本生产。 

模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。 

但是模拟示波器的某些特点,却是数字示波器所不具备的: 

操作简单——全部操作都在面板上,波形反应及时,数字示波器往往要较长处理时间。 
垂直分辨率高——连续而且无限级,数字示波器分辨率一般只有8位至10位。 
数据更新快——每秒捕捉几十万波形,数字示波器每秒捕捉几十个波形。 
实时带宽和实时显示——连续波形与单次波形的带宽相同,数字示波器的带宽与取样率密切相关,取样率不高时需借助内插计算,容易出现混淆波形。 

简而言之,模拟示波器为工程技术人员提供眼见为实的波形,在规定的带宽内可非常放心进行测试。人类五官中眼睛视觉十分灵敏,屏幕波形瞬间反映至大脑作出判断,微细变化都可感知。因此,模拟示波器深受使用者的欢迎。 

二、数字示波器独领风骚 

八十年代的数字示波器处在转型阶段,还有不少地方要改进,美国的TEK公司和HP公司都对数字示波器的发展作出贡献。它们后来甚至停产模拟示波器,并且只生产性能好的数字示波器。进入九十年代,数字示波器除了提高带宽到1GHz以上,更重要的是它的全面性能超越模拟示波器。出现所谓数字示波器模拟化的现象,换句话说,尽量吸收模拟示波器的优点,使数字示波器更好用。 

数字示波器首先在取样率上提高,从最初取样率等于两倍带宽,提高至五倍甚至十倍,相应对正弦波取样引入的失真也从100%降低至3%甚至1%。带宽1GHz的取样率就是5GHz,甚至10GHz。 

其次,提高数字示波器的更新率,达到模拟示波器相同的水平,最高可达每秒40万个波形,对观察偶发信号和捕捉毛刺脉冲就方便多了。 

再次,采用多处理器加快信号处理能力,从多重菜单的烦琐测量参数调节,改进为简单的旋钮调节,甚至完全自动测量,使用上与模拟示波器同样方便。 

最后,数字示波器与模拟示波器一样具有屏幕的余辉方式显示,赋于波形的三维状态,即显示出信号的幅值、时间以及幅值在时间上的分布。具有这种功能的数字示波器称为数字荧光示波器或数字余辉示波器。 

三、数字示波器要有模拟功能 

模拟示波器用阴极射线示波管显示波形,示波管的带宽与模拟示波器的相同,亦即示波管内的电子运动速度与信号频率成正比,信号频率越高电子速度越快,示波管屏幕的亮度与电子束的速度成反比,低频波形的高度高,高频波形的高度低。利用荧光屏的亮度或灰度容易获得信号的第三维信息,如用屏幕垂直轴表示幅度,水平轴表示时间,则屏幕亮度可表示信号幅度随时间分布的变化。这种与时间有关的荧光余辉(灰度定标)效应对观察混合波形和偶发波形十分有效。模拟存储示波器就是这种专用示波器的代表产品,最高的性能达到800MHz带宽,可记录到1ns左右的快速瞬变偶发事件。 

数字示波器缺少余辉显示功能,因为它是数字处理,只有两个状态,非高即低,原则上波形也是“有”和“无”两个显示。为达到模拟示波器那样的多层次亮度变化,必需采用专用图像处理芯片,例如TEK公司采用DPX型处理器芯片,具有数据采集、图像处理和存储等多项功能,DPX芯片由130万个晶体管组成,采用0.65um的CMOS工艺,并行流水结构,取样率2GS/s。它既是数据采集芯片,同时也是光栅扫描器,模拟示波管屏幕荧光体的发光特性,用16级亮度分级,将波形存储在500*200像素的LCD单色或彩色显示屏上,每0.33秒更新一次。由于模拟存储示波器只能依靠照相底片记录波形,对数据保存并不十分方便。例如用红色表示出现机率最高的波形,兰色表示出现机率最低的波形,达到一目了然。由于数字示波器已经达到1GHz带宽的水平,配合荧光显示特性,总的性能优于模拟存储示波器。 

四、数字荧光示器 

去年著名电子示波器制造商TEK公司首先推出数字荧光示波器两种系列TDS500(单色)和TDS700(彩色),具有500MHz-2GHz带宽,取样率最高2GHz,较多4通道输入,属于中高档数字示波器,价位在10,000美元以上。今年生产一种TDS3000系列数字荧光示波器,起价只3,000美元,带宽500MHz ,取样率最高5GS/s,受到用户的欢迎。另一家专门生产数字示波器的LeCroy公司,今年也推出一种数字余辉示波器,名称虽有别于数字荧光示波器,它们的功能实际上是相同的。Waverunner系列的带宽500MHz,取样率500MS/s,较多4通道输入,起价5,999美元。 

以下较详细介绍这两种系列数字示波器的特点: 

普通数字示波器要观察偶发事件需要使用长时间记录,然后作信号处理,这种办法会漏掉非周期性出现的信号和不能显示信号的动态特性。数字荧光示波器能够显示复杂波形中的微细差别,以及出现的频繁程度。例如观察电视信号,既有行扫描、帧扫描、视频信号和伴音信号,还要记录电视信号中的异常现象,对于专业人员和维修人员都是同样重要的。 

TEK公司的TDS3000数字荧光示波器提供多种测试模块,可以从前面板右上角插入四种模块。例如触发模块可作逻辑状态、逻辑图形触发,以及脉冲参数(上升、下降边,宽度、周期等);电视模块专用于多种制式的(NTCS、PAL和SECAM)波形记录;快速傅里叶变换(FFT)模块可快速显示信号的频率成分和频谱分布,既可分析脉冲响应,亦可分析谐波分布,并且识别和定位噪声和干扰来源。 TDS3000系列示波器是便携式的,重量不到7磅,可由电池供电,特别适于现场使用。 

LeCroy公司的Waverunner系列数字余辉示波器的余辉时间常数是可以改变的,因此在使用上与模拟存储示波器非常相似。它的抖动和定时分析(JTA)软件包可对屏幕显示的信号作定量分析,例如,经过数字处理后可在脉冲抖动的波形下面划出亮线,亮线长度表示抖动范围,最亮部分表示经常出现的抖动区。积累波形数目达10万个,结果可绘制成直方图。 

Waverunner示波器还有两种测试用软件包:数字和测量软件包,波形分析软件包。前者可自动测量和分析40种常用参数(如脉冲上升、下降时间,最大、最小值,偏差值等),预测某种参数的趋势(如测量IC的传输延时的变动范围)。后者包括FFT分析,较多可达10(6)点的记录长度;高分辨率方式;包络方式;模板测试;合格/不合格测试等。各种测试结果均利用彩色显示器的不同颜色不同亮度表示结果,真正让使用者的视觉获得迅速的反应,充分发挥余辉灰度的三维效应。  随着数字处理电路和液晶屏的采用, 电子工程师日常使用的数字示波器现在只需1 0 万~25万日元(100日元约合7.6元人民币)就可买到(见图1)。带宽为100MHz~300MHz的数字示波器适合于多种应用,从软件调试到机械控制信号及视频信号的测量等(见图2)。在不同的应用中,它们可以用于进行生产线的pass/fail判定,或是用作现场工程师随身携带的测试设备,甚至还能用在正式的设计开发工作中。


图1 低价位数字示波器


图2低价位示波器适于多种应用

新兴厂商的产品便宜10%

驱动低价位数字示波器市场的是普源精电、固纬电子等活跃在中低端领域的测试测量厂商(见表1)。与示波器行业的两大巨头——安捷伦与泰克的同类产品相比,这些新兴厂商的产品的价格要便宜10%(1万~2万日元)左右。凭借极具竞争力的价格以及不逊于传统测试测量厂商的技术实力,普源精电和固纬电子在市场上均获得了较好的销售实绩:2007年,普源精电数字示波器年出货量达到3万台,在同类产品中位居全球第二;固纬电子则在2008年售出了2万台模拟示波器和3万台数字示波器。

另外,一些在测试测量仪器领域开发经验相对较少的厂商也推出了自己的示波器产品,其中一个有名的低价品牌就是由原本主营中小尺寸液晶屏与小型电视的利利普电子(Lilliput Electronics)公司推出的OWON品牌。该公司带宽100MHz的数字示波器的售价仅为11.8万日元,比普源精电、固纬电子等测试测量厂商的产品更便宜。

基本性能大致相同

一般来说,选择数字示波器时需要考虑的参数主要有三个:带宽、采样率、存储深度。如果单从产品数据手册中列明的技术规格来比较,那么各公司的低价位数字示波器产品之间没有太大差别(见表2)。安捷伦公司电子测量本部市场营销中心市场发展经理佐藤利宏也表示:“低价位数字示波器在基本性能方面几乎没有差别。”

带宽方面,100MHz已成为低价位数字示波器的标准带宽。此外,示波器的带宽至少要达到被测信号频率的5倍。也就是说,带宽100MHz的低价位数字示波器可以测量的信号频率最大约为20MHz。

为了避免混叠现象,示波器的采样率也需要达到被测信号的10倍以上。如果示波器的带宽为100MHz,那么采样率就需要达到200MS/s。本文涉及的数字示波器产品均满足这一要求。

在调试数字信号等应用中,存储深度也是工程师必须关注的性能参数。不同示波器产品的存储深度均有所不同,如利利普电子公司OWON品牌中具有逻辑分析功能的MSO7102T可提供每通道4M点的存储深度。

所需的存储深度取决于要测量的时间。可以是根据采样率,在能够满足测量时间需求的前提下选择具有最大存储深度的产品。如泰克公司TDS2022B的捕获时间为1.25μ s,力科公司WJ312A的捕获时间可达到500μs。

波形质量存在差异

为了进一步了解产品的实际性能,此次,《日经电子》杂志社对安捷伦、泰克、力科、普源精电、固纬电子等5家公司带宽100MHz的低价位数字示波器样机进行了实际的测量比较(见表3)。

首先比较的是频率响应。示波器应该在可测量范围内具有良好的平坦频率响应。此外,示波器的带宽被定义为正弦输入信号的振幅衰减到-3dB时的频率值。因此,对于带宽100MHz的示波器来说,当频率为100MHz时,其显示信号的振幅需大于输入信号的70.7%。


图3虽然均满足要求, 但各产品仍有不同

在实际测量中,输入为振幅60mV的正弦波信号,得到了直至200MHz的频率响应特性。由于5款示波器的额定带宽均为100MHz,所以100MHz时显示信号的振幅只要大于42.4mV即符合标准。实测结果证明5款产品均满足这一需求(见图3)。其中,在1MHz~100MHz频率范围内具有较佳频率响应特性的是泰克公司的TDS2014B,而所有5款产品的频率响应在20MHz以内都具有极好的平坦性。

放大器的性能不同

仔细分析测量结果,还是可以发现产品之间的性能差异。具体来说,信号振幅衰减到-3dB时的频率(即示波器的实际带宽)是不同的。在这一点上,性能较佳的是安捷伦公司的DSO1014A,其实际带宽接近200MHz。上述差异主要是由于放大器性能的不同而造成的。在以下两种情况下进行测量时,放大器的性能将会对测量结果产生影响。

一种情况是测试带宽接近100MHz的信号。如果被测信号的频率超过20MHz(推荐频率),那么在高频下,具有更大实际带宽的数字示波器能够显示出更加准确的波形。

第二种情况是测量矩形波等上升沿很陡的信号。示波器的实际带宽越宽,则越能准确地测量此类信号。在实际测量中,向示波器输入上升沿极陡(700ps)的矩形波,然后使用自动测量功能得到矩形波的上升时间(见图4)。安捷伦的DSO1014A显示信号上升时间为1.80ns,而GDS-1102A的结果则达到3.19ns。需要指出的是,这些测量超出了产品数据手册中标明的推荐应用范围,因此得不到正确值也是正常的。在这5款示波器的产品数据手册中,确保可测量的上升时间的最小值及典型值均为3.5ns。


图4频率特性不同,上升时间也有差异

3.5ns这个数值是根据100MHz的额定带宽推算出来的。基于高斯曲线与一阶RC滤波电路的频率响应特性,示波器的上升时间和带宽的关系式为:上升时间=0.35/带宽(Hz)。通过此次的实际测量可知,不同产品具有不同的实际带宽,所以可以测量的上升时间有可能短于数据手册中标明的额定值。

放大器的允许输入范围也有所不同。放大垂直轴,使得波形超出屏幕(被称为“过驱动”)时,很容易发现这一差异(见图5a)。例如,在开关电源等的开发过程中,研究IGBT等功率半导体的特性时,为了更好的理解器件在导通情况下的损耗,就需要采用过驱动的方法进行测量。如果放大器的允许输入范围不足,放大波形后就会导致放大器饱和或信号失真,于是无法观测到正确的波形。


图5波形的显示能力有差别

数字电路所引起的显示差异

除了放大器等模拟电路部分外,示波器的不同也体现在数字电路部分上。日本一家提供测试测量仪器租赁服务的公司表示:“不同厂商在数字示波器的内部计算方面都具有各自的专业技术,因此,各产品显示波形的准确度也有所不同。”

由于波形更新速度不足时,视频信号很难重现原有波形,因此,从视频信号的显示上很容易就能看出各款产品之间因数字电路的不同而造成的显示差异(见图5b)。

具有超高性能的模拟示波器的波形更新速度可高达100万次/秒,普通模拟示波器的波形更新速度也有数万至数十万次/秒,所以模拟示波器在显示视频信号时一般不会因为波形更新速度不足而出现问题。

数字示波器的波形更新速度则相对较慢。在显示捕获到的数据时,示波器需要通过微处理器和DSP等对数据进行处理,这个处理所需的时间即决定了示波器的波形更新速度。在数字示波器中,某些具备高速处理电路的高价位产品也可以提供数十万次/秒的波形更新速度。

但对于低价位数字示波器产品来说,很多厂商都没有在数据手册中标明产品的波形更新速度。虽然可以通过咨询厂商而得到该数值,但通常只有数十至数千次/秒,不同产品之间还存在不小的偏差(见表2)。如果利用波形更新速度仅为数百次/秒的产品来显示视频信号,通常无法完整显示出原有波形。例如,如果只是显示一张彩色图表,那么波形更新速度只需1000次/秒即可正常显示;但如果要显示模拟视频信号,就需要1万~10万次/秒的波形更新速度。

当需要利用示波器来观测电机等旋转部件中的PWM(脉宽调制)、PAW(脉幅调制)等控制波形时,波形更新速度也非常重要。此次也在100kHz~500kHz的频率范围内对5款低价位数字示波器产品进行了测试,令其显示振幅变化70%的100Hz扫描信号。结果显示,波形更新速度低于几百次/秒的产品无法跟上扫描速度。

除了视频信号和电机控制信号以外,示波器在测量传感器的输出或低速串行信号等时,也需要较高的波形更新速度。有些传感器输出数字信号,会将模拟值转化为数字信号脉冲,如果要对其进行测量,就需要1000次/秒的波形更新速度。而对于输出模拟信号的传感器来说,较低的波形更新速度即可满足需求。

测量I2C与SPI等低速串行信号时,如果要确认数据改变的时序,那么也必须选择波形更新速度为100~1000次/秒的产品。在这种情况下,虽然波形更新速度越高越好,但如果带宽仅为100MHz,那么速度再高也没有太大意义。如果想获得更详细的信息,就应该选用高价位的示波器产品。

厂商的目标应用不同

如上所述,各厂商的低价位数字示波器产品都有所不同,而且,如果像选择模拟示波器一样去选购数字示波器产品,有可能会达不到自己想要的测量效果。不过,低价位数字示波器产品的差别通常只会体现在非常规测量中,在普通应用中基本可以认为它们没有差别。

在示波器走向数字化之后,虽然大部分主要部件都可以选用通用产品,但由于各厂商的目标应用不同,因此在元器件选择、电路设计等其它方面也有差别。在极限测量情况下,波形质量也会不同。

目前的趋势是,主要生产低价位产品的新兴厂商希望能够提供更多的功能及更好的性能,而巨头厂商则希望能够对应用领域进行细分。泰克(日本)公司市场经理柴崎裕士表示:“我们提供用于观测波形的低价位示波器,其功能仅限于观测信号值(电压)、频率、周期等。如果需要进行更多分析,我们则可提供波形更新速度更快、存储深度更大的产品。”安捷伦公司的佐藤利宏也表示:“如果需要测量模拟电视信号,我们推荐波形更新速度高达10万次/秒的高端产品。”

在选择低价位数字示波器时,用户必须充分了解自己的测量需求。低价位示波器的目标应用通常可以分为两类,一类是用于在调试嵌入式软件时观测低速数字信号的波形以确认高电平/低电平时序,另一类是用于取代具有同样带宽的模拟示波器。

对于第一类应用,由于波形质量不太重要,因此只要选择带宽合适的示波器即可。此外,有些数字示波器产品是专门针对这种应用开发的,这些产品没有采用具有较高性能的部件,从而降低了整体成本。厂商还可将节约的部件成本用来扩大存储深度或增加通道,以确保测量时间。对于第二类应用,就像在过驱动测量与视频信号测量的例子中所看到的那样,不是所有产品都具有足够的性能以应对必需的测量要求。

上一篇:无纸记录仪出了问题怎么办 无纸...

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!