X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

数字逻辑分析仪 分析仪是如何工作的

时间:2020-08-05    来源:仪多多仪器网    作者:仪多多商城     

一、逻辑分析仪的发展  
自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是可以的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。  今天的发展趋势
  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,可以能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。

  二、逻辑分析仪的选择
  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。
  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:
  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;
  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便可以地利用系统资源,消除由定时分析能够分析出的一些故障;
  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;
  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。
  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。
  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:
  1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。
  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。
  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。
  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。
  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。
  逻辑分析仪的一些技术指标:
  1、逻辑分析仪的通道数 :在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340通道以上。例Tektronix等。
  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。
  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。
表一:典型的数字设备
  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统较快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。
  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。 
 5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的 探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头具有代表性,属于逻辑分析仪的高档探头。
  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的 逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。
  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。
  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。
 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引出,特别是BGA封装,确实有困难,并且分立器件的尺寸也越来越小,典型的已达到0.5mm×0.8mm。
  d) 与现有电路板上的调试部分的兼容性。
  6、系统的开放性:随着数据共享的呼声越来越高,我们所使用的系统的开放性就越来越重要,现在的逻辑分析仪的操作系统也由过去的专用系统发展到使用Windows介面,这样我们在使用时很方便。
  小结
  如果在你的工作中有数字逻辑信号,你就有机会使用逻辑分析仪。因此应选好一种逻辑分析仪,既符合所用的功能,又不太超越所需的功能。用户多半会找一种容易操作的仪器,它在功能控制上操作步骤较少,菜单种类也不多,而且不太复杂。
  从另一方面说,如果需要用较快速度的和最大型的分析能力很强的逻辑分析仪,已有现成的解决方案。这种新颖仪器几乎不会出现通道对通道的延时以及探头的负载影响。如果你稍有疏漏,则可能要花费几万美元的学费才能取得经验。
  确实能捕获到信号才是第一重要的事。当你知道正在捕获的 数据是有用的数据时就靠逻辑分析仪能力的发挥了。



    红外烟气分析仪是利用红外线进行气体分析。它基于待分析组分的浓度不同,吸收的辐射能不同.剩下的辐射能使得检测器里的温度升高不同,动片薄膜两边所受的压力不同,从而产生一个电容检测器的电信号。这样,就可间接测量出待分析组分的浓度。

    红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性的原理而进行气体成分和含量分析。

    红外线一般指波长从0.76μm至1000μm范围内的电磁辐射。在红外线气体分析仪器中实际使用的红外线波长大约在1~50μm。

    红外烟气分析仪受水分干扰的消除方法:

    烟气排放中的水含量是影响二氧化硫和氮氧化物测定的主要干扰物,水分干扰直接影响了仪器的测量精度。这也是为什么部分红外气体分析仪在实验室条件下使用标准气检定时合格,在CEMS现场测试却达不到要求的原因。

    消除水分干扰误差的方法通常两种:

    采用脱水装置;

    设置水分传感器并进行软件补偿。

    采用脱水装置的方法有采用高效干燥剂如无水高氯酸镁,或者采用NAFION膜式干燥管。其主要问题在于需要经常更换,人为增加了运行维护成本。仪器生产厂家也有可能在检定时使用脱水装置,但是在运行时为减少运行费用不采用该装置,造成实际运行中的性能改变,导致CEMS监测数据不确定度增加。采用水分传感器软件补偿的方法一般只修正零点的水分干扰,且低端的分辨率较低。对于同时含水和含SO2,NO的气体的修正精度很差。

    此外对于NO分析仪,由于在相同的气室长度下,NO的分辨率低于H2O的分辨率,采用水分传感器修正的方法对NO会造成很大的误差。那么如何真正有效降低水分对红外分析仪测量的影响呢?红外烟气分析仪在传统微流红外传感器的基础上,增加了调水机构。它是通过将不同温度下的饱和空气依次通入红外传感器,通过调节调水机构,使得含有非冷凝水的气体与N2的信号一致。同时通过硬件调节及线性修正,来消除H2O(气)对SO2、NOx的干扰。进一步实验结果还表明,通过该方法调节后的传感器可以满足各种水分含量条件下的水分干扰消除,干扰的程度可控制在5ppm以内。






随着人们环保和节能意识的逐渐提高,众多大中型企业如钢铁冶金、石油化工、火力发电厂等,已将提高燃烧效率、降低能源消耗、降低污染物排放、保护环境等作为提高产品质量和增强产品竞争能力的重要途径。钢铁行业的轧钢加热炉、电力行业的锅炉等燃烧装置和热工设备,是各行业的能源消耗大户。因此,如何测量和提高燃烧装置的燃烧效率、确定较佳燃烧点,是十分令人关心的。

确定较佳燃烧效率点

供给加热炉、锅炉等加热设备的燃料燃烧热并不是全部被利用了。以轧钢加热炉或锅炉为例,有效热是为了使物料加热或熔化(以及工艺过程的进行)所必须传入的热量,炉子烟气带走的物理热是热损失中主要部分。当鼓风量过大时(即空燃比α偏大),虽然能使燃料充分燃烧,但烟气中过剩空气量偏大,表现为烟气中O2含量高,过剩空气带走的热损失Q1值增大,导致热效率η偏低。与此同时,过量的氧气会与燃料中的S、烟气中的N2反应生成SO2、NOX等有害物质。而对于轧钢加热炉,烟气中氧含量过高还会导致钢坯氧化铁皮增厚,增加氧化烧损。

当鼓风量偏低时(即空燃比α减小),表现为烟气中O2含量低,CO含量高,虽说排烟热损失小,但燃料没有完全燃烧,热损失Q2增大,热效率η也将降低。另外,烟囱也会冒黑烟而污染环境。

所谓提高燃烧效率,就是要适量的燃料与适量的空气组成较佳比例进行燃烧。热效率与烟气中的CO、O2、CO2含量以及排烟温度、供热负荷、雾化条件等因素有关。因此,可通过氧化锆氧量分析仪测量并控制烟道气体中CO、O2、CO2的含量来调节空气消耗系数λ,来达到最高燃烧效率。

燃烧效率控制由来已久,上世纪60年代,曾广泛采用CO2分析仪监测烟道气体中CO2含量来控制空气消耗系数λ以达到较佳,但CO2含量受燃料品种影响较大。70年代后,逐渐采用烟气中O2含量或O2含量和CO含量相结合的方法来控制燃烧效率。

提高燃烧效率最直接的方法就是使用烟气分析仪器(如烟气分析仪、燃烧效率测定仪、氧化锆氧含量检测仪)连续监测烟道气体成分,分析烟气中O2含量和CO含量,调节助燃空气和燃料的流量,确定较佳的空气消耗系数。

测量烟气中含氧量的仪表称为氧分析仪(氧量计)。常用的氧分析仪主要有热磁式和氧化锆氧量分析仪两种。

热磁式氧分析仪

其原理是利用烟气组分中氧气的磁化率特别高这一物理特性来测定烟气中含氧量。氧气为顺磁性气体(气体能被磁场所吸引的称为顺磁性气体),在不均匀磁场中受到吸引而流向磁场较强处。在该处设有加热丝,使此处氧的温度升高而磁化率下降,因而磁场吸引力减小,受后面磁化率较高的未被加热的氧气分子推挤而排出磁场,由此造成"热磁对流"或"磁风"现象。在一定的气样压力、温度和流量下,通过测量磁风大小就可测得气样中氧气含量。由于热敏元件(铂丝)既作为不平衡电桥的两个桥臂电阻,又作为加热电阻丝,在磁风的作用下出现温度梯度,即进气侧桥臂的温度低于出气侧桥臂的温度。不平衡电桥将随着气样中氧气含量的不同,输出相应的电压值。

热磁式氧分析仪虽然具有结构简单、便于制造和调整等优点,但由于其反应速度慢、测量误差大、容易发生测量环室堵塞和热敏元件腐蚀严重等缺点,已逐渐被氧化锆氧分析仪所取代。

氧化锆传感器式氧分析仪

氧化锆(ZrO2)是一种陶瓷,一种具有离子导电性质的固体。在常温下为单斜晶体,当温度升高到1150℃时,晶型转变为立方晶体,同时约有7%的体积收缩;当温度降低时,又变为单斜晶体。若反复加热与冷却,ZrO2就会破裂。因此,纯净的ZrO2不能用作测量元件。如果在ZrO2中加入一定量的氧化钙(CaO)或氧化钇(Y2O3)作稳定剂,再经过高温焙烧,则变为稳定的氧化锆材料,这时,四价的锆被二价的钙或三价的钇置换,同时产生氧离子空穴,所以ZrO2属于阴离子固体电解质。ZrO2主要通过空穴的运动而导电,当温度达到600℃以上时,ZrO2就变为良好的氧离子导体。

在氧化锆电解质的两面各烧结一个铂电极,当氧化锆两侧的氧分压不同时,氧分压高的一侧的氧以离子形式向氧分压低的一侧迁移,结果使氧分压高的一侧铂电极失去电子显正电,而氧分压低的一侧铂电极得到电子显负电,因而在两铂电极之间产生氧浓差电势。此电势在温度一定时只与两侧气体中氧气含量的差(氧浓差)有关。若一侧氧气含量已知(如空气中氧气含量为常数),则另一侧氧气含量(如烟气中氧气含量)就可用氧浓差电势表示,测出氧浓差电势,便可知道烟气中氧气含量。

氧化锆氧分析仪具有结构和采样预处理系统较简单、灵敏度和分辨率高、测量范围宽、响应速度较快等优点。

烟气分析仪器应用领域十分广泛,例如:

热电厂循环流化床锅炉用于燃烧控制室的烟道气体监测;
钢铁厂轧钢加热炉用于解决降低氧化烧损或脱碳层厚度时的炉气气氛检测;
全氢热处理炉用于检测辐射管是否烧穿漏气;
研制新型燃烧器(蓄热式、低NOX式、辐射管式)时用于燃烧器结构尺寸的设计研究;
汽车尾气排放检测;
其他工业窑炉及垃圾焚烧炉烟气监测。

上一篇:如何为农业机械应用选择压力传感...

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!