X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

原子吸收光谱的产生及原子吸收法的定量基础 原子吸收光谱如何操作

时间:2020-08-07    来源:仪多多仪器网    作者:仪多多商城     
原子吸收光谱的产生
当辐射光通过待测物质产生的基态原子蒸气时,若入射光的能量等于原子中的电子由基态跃迁到激发态的能量,该入射光就可能被基态原子所吸收,使电子跃迁到激发态。
原子吸收光的波长通常在紫外和可见区。若入射光是强度为I0的不同频率的光,通过宽度为b的原子蒸气时,有一部分光将被吸收,若原子蒸气中原子密度一定,则透过光(或吸收光)的强度与原子蒸气宽度的关系同有色溶液吸收光的情况完全类似,服从朗伯(Lambert)定律。
原子吸收法的定量基础
原子蒸气所吸收的全部能量,在原子吸收光谱法中称为积分吸收,理论上如果能测得积分吸收值,便可计算出待测元素的原子数。但是由于原子吸收线的半宽度很小,约为0.002nm,要测量这样一条半宽度很小的吸收线的积分吸收值,就需要有分辨率高达50万的单色器,这个技术直到目前也还是难以做到的。
而在1955年,瓦尔什(Walsh)从另一条思路考虑,提出了采用锐线光源测量谱线峰值吸收(peak absorption)的办法来加以解决。所谓锐线光源(narrow-linesource),就是能发射出谱线半宽度很窄的发射线的光源。
使用锐线光源进行吸收测量时,其情况如图1-2所示。根据光源发射线半宽度小于吸收线半宽度的条件,考察测量原子吸收与原子蒸气中原子密度之间的关系。若吸光度为 A,则:
A=KC

示意图中,C 为待测元素的浓度;K 在一定实验条件下是一个常数。
示意图为比尔定律(Beer law),它表明在一定实验条件下,吸光度与待测元素的浓度成正比的关系,所以通过测定吸光度就可以求出待测元素的含量,这就是原子吸收分光光度分析的定量基础。
实现峰值吸收的测量,除了要求光源发射线的半宽度应小于吸收线的半宽度外,还必须使通过原子蒸气的发射线中心频率恰好与吸收线的中心频率 ν0 相重合,这就是为什么在测定时需要使用一个与待测元素同种元素制成的锐线光源的原因。
   岛津原子吸收光谱工作条件的选择:
  (1)分析线。-个元素若有多条分析线,通常采用较灵敏线,但也要根椐样品中被测元素的含量来选择。例如测定钴时,为了得到较高灵敏度,应使用240.7nm谱线,但要得到较高精度,而且钴的含量较高时,使用较强的352.7nm谱线。也要考虑干扰问题。如测定铷时,为了消除钾、钠的电离干扰,可用798.4nm代替780.0nm。测定铅时,为了克服短波区域的背景吸收和噪声,不使用217.0nm灵敏线而用283.3nm谱线。
 
  (2)光谱通带。它是指单色仪出口狭缝包含波长的范围。Δλ=DxS,Δλ为通带,D为线色散率倒数,S为出口狭缝宽度。选择的原则:在能将邻近分析线的其他谱线分开的情况下,应尽可能采用较宽的通带,可提高信噪比,对测定有利。对于有复杂谱线的元素来说,如铁、钴、镍等,要求选择较窄的通带,否则会带来光谱干扰、灵敏度下降、工作曲线弯曲。
 
  (3)灯电流。在保证仪器的稳定前提条件下,采用较低的电流,可提高测定灵敏度和延长灯的使用寿命。对大多数元素而言,应采用额定电流的40%~60%。
 
  (4)对光。在调节燃烧头时,使其缝口正好在光束的中央,升高或降低燃烧器,使光束正好在缝口上方。点燃火焰,吸入一个标准溶液,对燃烧器再进行调节,直到获得较大吸收。
 
  (5)火焰的分类选择。吸入一个标准溶液,固定助燃气的流量,逐步改变燃气的流量,使得到较大的吸收值和稳定的火焰,也要有利于减少干扰。
 
  (6)燃烧器高度。选择燃烧器高度也就是选择火焰的区域。先从灵敏度和稳定性来考虑选择适宜的高度;遇到干扰时,再改变其高度以设法避免干扰。若干扰仍然存在,应考虑采用其他消除干扰的方法。

原子吸收光谱分析的应用领域

  原子吸收光谱分析现已广泛用于各个分析领域,主要有四个方面:理论研究、元素分析、有机物分析、金属化学形态分析。

  1、理论研究中的应用:

  原子吸收可作为物理和物理化学的一种实验手段,对物质的一些基本性能进行测定和研究。电热原子化器容易做到控制蒸发过程和原子化过程,所以用它测定一些基本参数有很多优点。用电热原子化器所测定的一些有元素离开机体的活化能、气态原子扩散系数、解离能、振子强度、光谱线轮廓的变宽、溶解度、蒸气压等。

  2、元素分析中的应用:

  原子吸收光谱分析,由于其灵敏度高、干扰少、分析方法简单快速,现巳广泛地应用于工业、农业、生化、地质、冶金、食品、环保等各个领域,目前原子吸收巳成为金属元素分析的强有力工具之一,而且在许多领域巳作为标准分析方法。原子吸收光谱分析的特点决定了它在地质和冶金分析中的重要地位,它不仅取代了许多一般的湿法化学分析,而且还与X-射线荧光分析,甚至与中子活化分析有着同等的地位。目前原子吸收法巳用来测定地质样品中70多种元素,并且大部分能够达到足够的灵敏度和很好的精密度。钢铁、合金和高纯金属中多种痕量元素的分析现在也多用原子吸收法。原子吸收在食品分析中越来越广泛。食品和饮料中的20多种元素巳有满意的原子吸收分析方法。生化和临床样品中必需元素和有害元素的分析现巳采用原子吸收法。有关石油产品、陶瓷、农业样品、药物和涂料中金属元素的原子吸收分析的文献报道近些年来越来越多。水体和大气等环境样品的微量金属元素分析巳成为原子吸收分析的重要领域之一。利用间接原子吸收法尚可测定某些非金属元素。

  3、有机物分析中的应用:

  利用间接法可以测定多种有机物。8-羟基喹啉(Cu)、醇类(Cr)、醛类(Ag)、酯类(Fe)、酚类(Fe)、联乙酰(Ni)、酞酸(Cu)、脂肪胺(co)、氨基酸(Cu)、维生素C(Ni)、氨茴酸(Co)、雷米封(Cu)、甲酸奎宁(Zn)、有机酸酐(Fe)、苯甲基青霉素(Cu)、葡萄糖(Ca)、环氧化物水解酶(PbO)、含卤素的有机化合物(Ag)等多种有机物,均通过与相应的金属元素之间的化学计量反应而间接测定。

  4、金属化学形态分析中的应用:

  通过气相色谱和液体色谱分离然后以原子吸收光谱加以测定,可以分析同种金属元素的不同有机化合物。例如汽油中5种烷基铅,大气中的5种烷基铅、烷基硒、烷基胂、烷基锡,水体中的烷基胂、烷基铅、烷基揭、烷基汞、有机铬,生物中的烷基铅、烷基汞、有机锌、有机铜等多种金属有机化合物,均可通过不同类型的光谱原子吸收联用方式加以鉴别和测定。

标签: 原子吸收光谱
原子吸收光谱 原子吸收光谱分析的应用领域_原子吸收光谱

上一篇:热式气体质量流量计的技术特点您...

下一篇:恒温水浴的操作使用及注意事项

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!