随着工业污染的加重,重金属超标的现象也越来越严重。无论是在水、土壤还是大气中重金属超标的报道时有发生。所以无论是“水十条”“土十条”还是“大气十条”都提出了要加强重金属污染的防治工作。无论是重金属污染“防”或者是“治”都离不开检测环节,其中汞、砷等重金属的检测可以应用原子荧光光度计来检测。其中需要注意的是因为大气中的重金属含量较低,所以在检测的时候对于仪器的灵敏度和稳定性都有较高的要求。
北京金索坤技术开发有限公司专注从事原子荧光光度计的研发以及生产三十余载,倾心打造出灵敏度高、稳定性好的新一代原子荧光光度计(以SK-乐析 原子荧光光度计为例)。
SK-乐析原子荧光光度计采用稳流、干燥、低温自动点火、高效双层屏蔽式为一体的流线型原子化器,减少了荧光猝灭和气相干扰,提高了原子化效率,提高仪器的灵敏度。此外,新一代原子荧光光度计的原子化器增加了三维可调机构,可以上下、左右、前后三个维度调节原子化器位置,从而达到激发效果,提高仪器的灵敏度。
金索坤研发出的新一代原子荧光光谱仪SK-乐析借鉴了ICP-MS进样方式,采用连续流动进样技术,将传统样品、空白交替进入的定量进样方式改为样品、样品连续进入的定速方式,在提高仪器检测效率的同时提高了仪器的稳定性,另外新型的进样技术配合多功能反应模块及集扩式传输室等技术的应用,使得仪器的稳定性指标从原有的RSD小于1.0%提升至RSD小于0.6%,指标全面优于国标及市面同类其他产品。为检测结果的稳定奠定了基础。
另外,新一代原子荧光光度计采用金索坤特有的两点标准曲线校正技术替代传统的繁琐校正技术。在低浓度区域、高浓度区域同时进行校正,保证了校正后样品测试结果的准确性,提高仪器的稳定性。
北京金索坤公司的研发团队会一如既往地为原子荧光技术的发展探索乾坤,用灵敏度更高、稳定性更好的原子荧光光度计助力大气中重金属的检测。
金索坤SK-典越高灵敏度快速测镉仪
作为中国氢化法原子荧光技术的发源地,北京金索坤技术开发有限公司研发原子荧光技术三十余载,为发展中国自主知识产权的分析仪器不断探索乾坤的同时,为您提供专业的原子荧光产品及技术服务。 作为一家只专注原子荧光技术研发的高新技术企业,金索坤为您提供新一代具有检测元素多(火焰法技术),测试速度快(连续流动进样技术),技术指标好(优于国标RSD<0.6%),省事、省耗材(多功能反应模块技术)的原子荧光光谱仪。
关于原子吸收分光光度计的一些重要指标:
(1)波长示值误差(波长的准确度)与重复性
谱线的理论波长与仪器波长测定读数的差值称为波长示值误差。特定谱线波长的多次测定(一般用3次)中最大值与最小值之差为波长重复性。检定规程要求:原子吸收分光光度计波长示值误差应不大于0.5nm,波长重复性应优于0.3nm。
(2)分辨率
原子吸收分光光度计仪器的分辨率是鉴别仪器对共振吸收线与邻近的其它谱线分辨能力大小的一项重要技术指标。一般在规定的光谱通带下可用特定谱线的半宽度来衡量,也可通过观察是否实际可分辨某些元素的多条相邻的谱线。如,能够清晰分辨开镍元素231.0nm、231.6nm、232.0nm三条相邻的谱线,则该仪器的实际分辨率为0.4nm;能够清晰分辨开汞265.2nm、265.4nm、265.5nm三条谱线,该仪器的实际分辨率为0.1nm;能清晰分辨开锰297.5nm、297.8nm两条谱线,该仪器的实际分辨率为0.3nm。
(3)基线稳定性
基线稳定性是仪器的重要技术指标,它反映整机稳定性状况。基线稳定性分静态和动态两种。
(4)灵敏度
灵敏度为原子吸收分光光度计仪器在单位浓度下获得的吸光度,亦即采用外标法定量分析中校准曲线的斜率。
原子吸收光谱仪是试验中常见的仪器,因此实验室人员应该好好的去维护它,以免发生不必要的故障,造成实验结果的不准确
故障排除首先应分析原因。仪器故障产生的原因和出现的现象是错综复杂的。必须小心观察故障现象,认真检测和细致的分析比较,才能找到故障的所在。下面介绍几种常见故障的排除方法
1、光源系统故障
A、空心阴极灯点不亮故障原因:灯电源出问题或未接通;灯头与灯座接触不良;灯头接线断路;灯漏气。
查处方法:分别检查电源、连线和插接件;若不是电路问题,再进行换灯检查。
B、灯阴极辉光颜色异常故障原因:灯内惰性气体不纯。
查处方法:在工作电流或大电流(80Ma,150mA)下反向通电处理。
C、灯阴极口外发光或阴极内发生跳动的火花状放电故障原因:灯内惰性气体压力降低不能维持正常放电,后者由阴极表面氧化物或杂质所致。
查处方法:前中情况需换新灯;后种情况通过十几毫安的电流直到火花放电停止,若无效则换新灯。
2、能量输出方面的故障
A、空心阴极灯亮而高压开启后无能量输出故障原因:无负高压;空心阴极灯发光异常或位置不对;波长不准;燃烧器挡光;单色器故障;主机电路故障。
查处方法:第二、三、四种情况易查,第一、五、六种情况需按说明书或维修手册的规定逐一处理或联系厂家。
B、输出能量过低故障原因:灯能量弱;光路调整不佳;透镜或单色器内光学元件被污染;波长不准;放大电路增益下降;光电倍增管衰老。
查处方法:如果是全波段内能量普遍偏低,应检测光电倍增管是否衰老和负高压是否正常;如果能量低与波长有关,除查看光学元件有无污染外,还应检查单色器光学系统有无机械位置变化;如果是因波长示值错乱,应重新校正波长;如果是线路增益问题,需检查放大板和光电倍增管查处原因。或直接联系厂家。
C、工作时能量显示不变化故障原因:主机电路中前置放大器连接问题;主放大器异常。
查处方法:检查前置放大器和运算放大器。
D、挡光时能量不为零故障原因:前置放大器组件或主放大器组件失调或损坏。
查处方法:用万用表监测前置放大器输出,或更换主放大器上的运算放大器。
3、吸收信号方面的故障
A、零点不对故障原因:空心阴极灯衰老,强度太弱;波长调节不准;石英窗口和聚光镜表面污染。
查处方法:针对具体原因相应处理
B、静态基线漂移故障原因:光源系统和检测系统故障。
查处方法:首先查明仪器是否受潮,放置吸潮硅胶仪器通电去潮,一段时间后仪器稳定性会逐渐正常。查明仪器单独“地线”是否良好。任何电磁感应都会使仪器产生漂移。元素灯和灯电源的稳定性负高压电源的稳定性等都可能导致基线漂移。
C、点火基线漂移故障原因:静态基线漂移;原子化系统故障。
查处方法:排除静态基线漂移;检查吸液毛细管有无堵塞和气泡,废液排泄是否畅通和雾化室内有无积水。气源压力不稳和燃烧器预热不够均会引起漂移。当然波长不准也会导致漂移。针对具体情况分别加以处理。
D、噪声大、读数不稳故障原因:光源系统、原子化系统、分光系统和检测系统发生故障。
查处方法:首先区分故障是来源于原子化系统还是电检测系统。通过点燃火焰吸喷纯水和不点火的情况比较,据基线稳定度就和判断。
如果判断故障来源于原子化系统,还要进而判断是来自火焰还是喷雾装罩,可通过吸喷纯水和调节喷雾器伟观察噪声电平是否明显减小或消失判断,否则噪声可能主要来自火焰。可调整燃助比、燃烧器高度和稳定气源压力来观察噪声电平的变化情况。喷雾器是火焰原子化系统噪声的主要来源。
如果判断故障主要来自电检测系统,需先区分出来自灯电源还是检测系统。可使用合格的铜灯让仪器和灯充分预热,切断入射光,考察此时的噪声电平。若正常则故障来自灯电源或元素灯。再进一步检测灯电源或更换新灯检查。
如果否定来自灯或灯电源,则需进一步检查单色器系统和检测系统。故障现象随波长而变化,则可判断故障主要来自单色器系统。单色器内部的杂散光、光栅及其他光学元件表面积聚灰尘、污秽均能使噪声电平增大。检测系统是噪声主要来源之一。需用万用表和示波器先查清是来自电源供电还是光电倍增管或电路。读数不稳定表示吸收信号上叠加较大的噪声。这对测量是不利的。导致读数不稳定的原因主要来自原子化系统,吸液毛细管堵塞,雾化器雾口腐蚀,雾化室内积液,空气和乙炔不纯或压力不稳,试液基体浓度过大,有沉淀和夹杂物,燃烧器缝口沉积有碳和无机盐或缝口堵塞而使火焰呈锯齿形,所有这些情况均影响读数稳定性。应针对具体问题加以检查排除。
4、灵敏度和检出限方面的故障
A、灵敏度低的故障原因:仪器工作条件不是较佳;毛细管和节流嘴相对位置和同心度不佳;撞击球位置不佳;雾化室内积废液;元素灯质劣;线路增益下降;光学元件积灰尘。
查处方法:需逐一根据不同问题查处处理。
B、检出限偏离故障原因:导致灵敏度低的诸项故障;造成噪声过大和读数不稳的各项故障。
查处方法:根据上述有关方法查处故障。
下一篇:恒温水浴的操作使用及注意事项