X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

催化燃烧式传感器工作原理 传感器是如何工作的

时间:2020-08-12    来源:仪多多仪器网    作者:仪多多商城     

催化燃烧式传感器属于高温传感器,催化元件的检测元件是在铂丝线圈(φ0.025~φ0.05)上包以氧化铝和粘合剂形成球状,经烧结而成,其外表面敷有铂、钯等稀有金属的催化层。

对铂丝通以电流,使检测元件保持高温(300~400),此时若与可燃气体接触如甲烷气体,甲烷就会在催化剂层上燃烧,燃烧的实质是元件表面吸附的甲烷与吸附的氧离子之间的反应,反应完成后生成CO2H2O解析,而气相中的氧由被元件吸附并解离,重新补充元件表面上的氧离子。

利用元件测量甲烷式基于在其表面测量甲烷燃烧反应放出的热量的原理,即燃烧使铂丝线圈的温度升高,线圈的电阻值就上升。测量铂丝电阻值变化的大小就可以知道可燃气体的浓度。

在实际应用中常采用惠斯顿电桥测量电路,如图所示。电桥中黑元件既是检测元件,白元件为补偿元件,白元件与黑元件相比只缺少催化剂层,也就是说白元件遇到可燃气体不能燃烧,。有一些厂家将黑白元件封装在一个防爆网内,也有一些厂家分别封装。当空气中有一定浓度的可燃气体时,检测元件由于燃烧而电阻值上升,电桥失去平衡,由电压输出,起到检测作用。

 一、催化原理及装置组成 (1)催化剂定义 催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。 (2)催化作用机理 催化作用的机理是一个很复杂的问题,这里仅做简介。在一个化学反应过程中,催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。那么,催化剂是怎样加速了反应速度呢了既然反应前后催化剂不发生变化,那么催化剂到底参加了反应没有?实际上,催化剂本身参加了反应,正是由于它的参加,使反应改变了原有的途径,使反应的活化能降低,从而加速了反应速度。例如反应A+B→C是通过中间活性结合物(AB)过渡而成的,即: A+B→[AB]→C 其反应速度较慢。当加入催化剂K后,反应从一条很容易进行的途径实现: A+B+2K→[AK]+[BK]→[CK]+K→C+2K 中间不再需要[AB]向C的过渡,从而加快了反应速度,而催化剂并未改变性质。 (3)催化燃烧的工艺组成 不同的排放场合和不同的废气,有不同的工艺流程。但不论采取哪种工艺流程,都由如下工艺单元组成。 ①废气预处理 为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。 ②预热装置 预热装置包括废气预热装置和催化剂燃烧器预热装置。因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。 预热装置加热后的热气可采用换热器和床层内布管的方式。预热器的热源可采用烟道气或电加热,目前采用电加热较多。当催化反应开始后,可尽量以回收的反应热来预热废气。在反应热较大的场合,还应设置废热回收装置,以节约能源。 预热废气的热源温度一般都超过催化剂的活性温度。为保护催化剂,加热装置应与催化燃烧装置保持一定距离,这样还能使废气温度分布均匀。 从需要预热这一点出发,催化燃烧法较为适用于连续排气的净化,若间歇排气,不仅每次预热需要耗能,反应热也无法回收利用,会造成很大的能源浪费,在设计和选择时应注意这一点。 ③催化燃烧装置 一般采用固定床催化反应器。反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。 在进行催化燃烧的工艺设计时,应根据具体情况,对于处理气量较大的场合,设计成分建式流程,即预热器、反应器独立装设,其间用管道连接。对于处理气量小的场合,可采用催化焚烧炉,把预热与反应组合在一起,但要注意预热段与反应段间的距离。 在有机物废气的催化燃烧中,所要处理的有机物废气在高温下与空气混合易引起爆炸,安全问题十分重要。因而,一方面必须控制有机物与空气的混合比,使之在爆炸下限;另一方面,催化燃烧系统应设监测报警装置和有防爆措施。 二、催化燃烧用催化剂 由于有机物催化燃烧的催化剂分为贵金属(以铂、钯为主)和贱金属催化剂。贵金属为活性组分的催化剂分为全金属催化剂和以氧化铝为载体的催化剂。全金属催化剂是以镍或镍铬合金为载体,将载体做成带、片、丸、丝等形状,采用化学镀或电镀的方法,将铂、钯等贵金属沉积其上,然后做成便于装卸的催化剂构件。由氧化铝作载体的贵金属催化剂,一般是以陶瓷结构作为支架,在陶瓷结构上涂覆一层仅有0.13mm的α-氧化铝薄层,而活性组分铂、钯就以微晶状态沉积或分散在多孔的氧化铝薄层中。 但由于贵金属催化剂价格昂贵,资源少,多年来人们特别注重新型的、价格较为便宜的催化剂的开发研究,我国是世界上稀土资源较多的国家,我国的科技工作者研究开发了不少稀土催化剂,有些性能也较好。 三、催化剂中毒与老化 在催化剂使用过程中,由于体系中存在少量的杂质,可使催化剂的活性和选择性减小或者消失,这种现象叫催化剂中毒。这些能使催化剂中毒的物质称之为催化剂毒物,这些毒物在反应过程中或强吸附在活性中心上,或与活性中心起化学作用而变为别的物质,使活性中心失活。 毒物通常是反应原料中带来的杂质,或者是催化剂本身的某些杂质,另外,反应产物或副产物本身也可能对催化剂毒化,一般所指的是硫化物如H2S、硫氧化碳、RSH等及含氧化合物如H2O、CO2、O2以及含磷、砷、卤素化合物、重金属化合物等。 毒物不单单是对催化剂来说的,而且还针对这个催化剂所催化的反应,也就是说,对某一催化剂,只有联系到它所催化的反应时,才能清楚什么物质是毒物。即使同一种催化剂,一种物质可能毒化某一反应而不影响另一反应。 按毒物与催化剂表面作用的程度可分为暂时性中毒和永久性中毒。暂时性中毒亦称可逆中毒,催化剂表面所吸附的毒物可用解吸的办法驱逐,使催化剂恢复活性,然而这种可再生性一般也不能使催化剂恢复到中毒前的水平。永久性中毒称不可逆中毒,这时,毒物与催化剂活性中心生成了结合力很强的物质,不能用一般方法将它去除或根本无法去除。 催化剂的老化主要是由于热稳定性与机械稳定性决定的,例如低熔点活性组分的流失或升华,会大大降低催化剂的活性。催化剂的工作温度对催化剂的老化影响很大,温度选择和控制不好,会使催化剂半熔或烧结,从而导致催化剂表面积的下降而降低活性。另外,内部杂质向表面的迁移,冷热应力交替所造成的机械性粉末被气流带走。所有这些,都会加速催化剂的老化,而其中最主要的是温度的影响,工作温度越高,老化速度越快。因此,在催化剂的活性温度范围内选择合适的反应温度将有助于延长催化剂的寿命。但是,过低的反应温度也是不可取的,会降低反应速率。 为了提高催化剂的热稳定性,常常选择合适的耐高温的载体来提高活性组分的分散度,可防止其颗粒变大而烧结,例如以纯铜作催化剂时,在200℃即失去活性,但如果采用共沉积法将Cu载于Cr2O3载体上,就能在较高的温度下保持其活性。

 

 

涡街流量传感器的工作原理

  涡街流量传感器是基于卡门涡街原理研制出来的,它不仅可以测量体积流量,还可以测量质量流量。自从它发明以来,其发展速度迅速加快,渐渐取代了一些传统的流量传感器,在未来的流量测量中将占主导地位,目前广泛应用于蒸汽、压缩空气和液体流量的测量。工作原理在一定的流动条件下,一部分流体动能转化为流体振动,其振动频率与流速(流量)有确定的比例关系。在流体中设置旋涡发生体(阻流体),从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街。

  涡街流量传感器特点:

  1、涡街流量传感器结构简单,没有可以运动部件,不会造成磨损,长期使用时,可靠性高。

  2、安装简单,维护方便。不需要另外增加导压管和支架,不用考虑受它们的影响,既节省了费用又提高了性能。

  3、内藏式传感器在测量的时候可以不直接接触被测介质,所以不会被腐蚀、污染,使用寿命长,性能稳定。

  4、测量范围宽,目前最高可达20比1。

  5、相对于差压流量计来说,它的压力损失小;相对于电磁流量传感器来说,它不易受干扰。此外,它的运行费用也低,对节能降耗有很大帮助。

  6、输出的信号是频率,它属于一种脉冲信号,不存在零点漂移,精度高,数据可靠。一、涡街流量传感器工作原理

  涡街流量传感器是基于卡门涡街原理研制出来的,它不仅可以测量体积流量,还可以测量质量流量。自从它发明以来,其发展速度迅速加快,渐渐取代了一些传统的流量传感器,在未来的流量测量中将占主导地位,目前广泛应用于蒸汽、压缩空气和液体流量的测量。工作原理在一定的流动条件下,一部分流体动能转化为流体振动,其振动频率与流速(流量)有确定的比例关系。在流体中设置旋涡发生体(阻流体),从旋涡发生体两侧交替地产生有规则的旋涡,这种旋涡称为卡曼涡街。

  涡街流量传感器特点:

  1、涡街流量传感器结构简单,没有可以运动部件,不会造成磨损,长期使用时,可靠性高。

  2、安装简单,维护方便。不需要另外增加导压管和支架,不用考虑受它们的影响,既节省了费用又提高了性能。

  3、内藏式传感器在测量的时候可以不直接接触被测介质,所以不会被腐蚀、污染,使用寿命长,性能稳定。

  4、测量范围宽,目前最高可达20比1。

  5、相对于差压流量计来说,它的压力损失小;相对于电磁流量传感器来说,它不易受干扰。此外,它的运行费用也低,对节能降耗有很大帮助。

  6、输出的信号是频率,它属于一种脉冲信号,不存在零点漂移,精度高,数据可靠。

标签: 涡街流量传感器
涡街流量传感器 涡街流量传感器的工作原理_涡街流量传感器 概述

电子皮带秤是皮带输送机输送固体散状物料过程中对物料进行连续称重的一种计量设备,早期的电子皮带秤使用了称重传感器、测速传感器两类传感器,而倾角传感器只是在需要测量皮带倾角的特殊情况下才使用的。如果皮带输送机输送物料过程中的倾角有较大范围的变化(特别是在皮带输送机本身倾角就比较大的情况倾角再有变化),对皮带秤的使用准确度就会产生很大的影响。

倾角变化对皮带秤的使用准确度的影响

当皮带输送机水平安装时,承载器上安装的称重传感器所受的力如为F2,那么当皮带输送机安装有一定倾角α时(见图1),承载器上安装的称重传感器所受的力则为F1。

F 1=F 2×cosα (1)

COSα值的大小决定了对秤的使用准确度的影响程度,可见表1。

分析一下表1,可以得到这样几个结论:

1)因为cosα值始终小于1,所以皮带输送机倾角变化的影响使得皮带秤秤架的受力减少,例如,α=15°时,cosα =0.9659,如果F2=100kg,则F 1=F 2×cosα =100×0.9659=96.59(kg)如果皮带输送机在使用过程中倾角由0°变化到15°,则由此产生的误差为3.41%,这样大的误差值是绝对不允许的。

2)当皮带输送机在0°倾角(即平皮带输送机)或低倾角运行时,倾角度数的稍许变化对称量准确度影响不大。例如当倾角度数变化发生在0°到3°之间时,cosα值仅从1.0000减少到0.9986,即由角度变化引起的最大误差还不到0.12%;当倾角度数变化发生在0°到8°之间时,cosα值仅从1.0000减少到0.9903,即由角度变化引起的最大误差还不到1%;所以在生产现场允许误差范围内,在皮带输送机低倾角运行时某些小范围的角度变化也可以忽略不计。

3)当皮带输送机在大倾角运行时,倾角度数的变化对称量准确度影响较大。例如当皮带输送机固有位置在18°倾角运行时,如果倾角减小到17°,则由角度变化引起的误差达到:(0.95630.9511)/0.9511=+0.55(%)如果倾角增加到19°,则由角度变化引起的误差达到:(0.9455-0.9511)/0.9511=-0.59(%)对于某些高准确度的计量皮带秤来说,在这种情况下皮带输送机倾角度数的1°变化将导致近0.6%的误差,这是很难被认可的。

由此可见,以下任何一种情况出现时需要设置倾角传感器对皮带输送机的倾角变化进行补偿;皮带输送机倾角变化范围大;皮带输送机固有位置的倾角较大且皮带输送机倾角有一定范围的变化;皮带输送机对计量准确度要求较高且皮带输送机倾角有可能发生变化。

对具体的应用场合,需了解皮带输送机固有位置的倾角和倾角可能的变化范围,然后采用上述计算方法计算出由角度变化引起的最大误差。作者建议,如果计算所得误差值小于计量准确度要求值的1/3,则可以不设置倾角传感器对皮带输送机的倾角变化进行补偿。如果大于计量准确度要求值的1/3或倾角可能的变化范围难以确定,则一定要设置倾角传感器对皮带输送机的倾角变化进行补偿。

倾角传感器工作原理

倾角传感器有多种结构形式,其工作原理也各不相同,如采用“液体摆”、重力加速度、磁阻尼等原理的电子倾角传感器。下面以采用“液体摆”的电子倾角传感器来介绍其工作原理(见图2)。

如图所示,在玻璃壳体内装有导电液,并有A、B、C三根铂电极和外部相连接,三根电极相互平行且间距相等。当玻璃壳体处于水平位置时(见图2左),三根电极插入导电液的深度相同。如果在两根电极之间加上幅值相等的交流电压时,电极之间会形成离子电流,两根电极之间的液体相当于两个电阻RI和RIII。若液体摆水平时,则RI=RIII。当玻璃壳体处于倾斜位置时(见图2右),电极间的导电液不相等,三根电极浸入液体的深度也发生变化,但中间电极B浸入深度基本保持不变,而左边电极C浸入深度小,则导电液减少,导电的离子数减少,电阻RI增大,右边电极A浸入深度大,则导电液增加,导电的离子数增加,电阻RIII减少,即RI>RIII。反之,若倾斜方向相反,则RI<RIII。这样,通过电桥电路可将电阻值的变化量转换为mV电信号量,由此可得到相应倾角的变化值。还可根据液体位置变化引起应变片的变化,从而引起输出电信号变化而感知倾角的变化。

倾角传感器的安装

图3是一台安装在皮带输送机纵梁上的倾角传感器,由于皮带输送机的纵梁较为坚固,其位置变化最能反映皮带输送机倾角的变化,所以通常就安装在这个位置上。安装时,仅仅只需要用螺栓将倾角传感器固定在纵梁上即可。

倾角传感器的应用

据系统设备(System Equipment)公司介绍,该公司的倾角传感器的补偿范围是0~30°,补偿的效果是可以将补偿前造成的误差减少到1/50,典型的数值是可将皮带输送机倾角变化所造成的误差减少到0.15%。

美国赛默飞歇尔• 拉姆齐公司的MT2000、MT3000系列累计器可接入10-44-3型倾角传感器(该公司称为倾斜补偿器),传感器为磁阻尼原理,倾角传感器安装在一个机壳内,机壳的顶面与输送机纵梁平行固定安装,通常机壳安装在皮带秤承载器附近1.5m范围内。

当输送机倾角改变时,倾角传感器安装的机壳也同步改变倾角,其输出信号也随之改变。10-44-3型倾角传感器的电源电压为直流8.6V~20.0V,测量范围为±18°,输出信号为0~8VDC。目前倾角传感器在皮带秤上的应用主要集中在原料场斗轮堆取料机(见图4)及移动式皮带输送机上。

山东济宁三号煤矿煤码头担负着煤炭外运任务,由于客户对煤炭种类需求繁多,这就需要进行配煤,因此需要在斗轮堆取料机安装电子皮带秤,以提高配煤准确度。皮带秤安装在斗轮堆取料机大臂的皮带机上,堆取料机的大臂会根据堆取高度的不同而俯仰作业,皮带秤的负载在垂直方向的力是一直变化的,通常这种角度的变化在-16°~+16°度之间。因此,为了修正由于斗轮堆取料机大臂角度变化带来的影响,应用于斗轮堆取料机的济南金钟ICS-L-XF4型皮带秤上配置了倾角补偿器,从而使计量准确度度达到0.5%。

在上海宝钢原料场斗轮堆取料机上,由于斗轮机的皮带输送机部分需根据堆取料的要求调整倾斜角度,所以在选用的徐州衡器厂ICS-XE皮带秤系统里配备了AE290倾角传感器,由它提供一个皮带倾角的补偿信号,从而有效地保证了称量准确度。

移动式皮带输送机操作要求皮带机整机移动、机架俯仰、左右旋转,因此皮带输送机的倾角在使用过程中频繁变化,江苏南京三埃公司为此研制成功“高精度移动式皮带秤”,该秤可以在上述操作条件下同时进行准确称重,使用中免维护,称重准确度可长期保持在≤0.5%。

上一篇:风速仪探头工作原理

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!