加速度传感器原理
加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。
1、加速度传感器原理概述
加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。
差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。
2、变间隙电容的基本工作原理
如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示:
由式(2-1)可知,平板电容器的电容量是、A、的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大校
由式(2-2)可知,极板间电容C与极板间距离是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在整个间隙,范围内变化,而是限制在一个较小的范围内,以使与C的关系近似于线性。
它说明单位输入位移能引起输出电容相对变化的大小,所以要提高灵敏度S应减少起始间隙,但这受电容器击穿电压的限制,而且增加装配加工的困难。
由式(2-5)可以看出,非线性将随相对位移增加面增加。因此,为了保证一定的线性,应限制极板的相对位移量,若增大起始间隙,又影响传感器的灵敏度,因此在实际应用中,为了提高灵敏度,减小非线性,大都采用差动式结构,在差动式电容传感器中,其中一个电容器C1的电容随位移增加时,另一个电容器C2的电容则减少,它们的特性方程分别为:
可见,电容式传感器做成差动式之后,非线性大大降低了,灵敏度提高一倍,与此同时,差动电容传感器还能减小静电引力测量带来的影响,并有效地改善由于温度等环境影响所造成的误差。
3、电容式差容式力平衡传感器器的工作原理与结构
3.1工作原理
如图1所示,差容式力平衡加速度传感器原理框图
电路中除了所必须的电容,电阻外,主要由正负电压调节器,四运放放大器LT1058,双运放op270放大器组成。
3.2差容式力平衡传感器机械结构原理
由于差动式电容,在变间隙应用中的灵敏度和线性度得到很大改善,所以得到广泛应用。如图2所示为一种差容式力平衡电容差容式力平衡传感器原理简图。主要由上、下磁钢,电磁铁,磁感应线圈,弹簧片,作电容中间极的质量块,覆铜的上下极板等部分组成。传感器上、下磁钢通过螺钉及弹簧相连,作为传感器的固定部分,上,下极板分别固定在上、下磁钢上。极板之间有一个用弹簧片支撑的质量块,并在此质量块上、下两侧面沉积有金属(铜)电极,形成电容的活动极板。这样,上顶板与质量块的上侧面形成电容C1,下底板与质量块下侧面形成电容C2,弹簧片一端与磁钢相连,另一端与电容中间极相连,以控制其在一个有效的范围内振动。由相应芯片输出的方波信号,经过零比较后输出方波,此方波经电容滤除其中的直流电压,形成对称的方波,该对称的方波加到电容的一个极板上,同时经一次反向后的对称波形加到另一个极板上。
当没有加速度信号时,中间极板处于上、下极板的中间位置C1=C2,△C=0后续电路没有输出;当有加速度信号时,中间极板(质量块)将偏离中间位置,产生微小位移,传感器的固定部分也将有微小的位移,设加速度为正时,质量块与上顶板距离减小,与下底板距离增大,于是C1>C2,因此会产生一个电容的变化量△C,△C由放大电路部分放大,同时,将放大电路的输出电流引入到反馈网络。由于OP270的脚1和16分别与线圈两端相连,当有电流流过线圈时,将产生感应磁场,就会有电磁力产生。因为上、下磁钢之间有弹簧,所以在电磁力的作用下将使磁钢回到没有加速度时的位置,即此时的电容变化完全有加速度的变化引起,同时由于线圈与活动极板通过中心轴线相连,所以在电磁力的作用下,使中间极向产生加速度时的位移的相反的方向运动,即相当于在△C的放大
人们通过感官从自然界获取各种信息,其中以人的视觉获取的信息量较多,约占信息总量的80%。随着信息技术的发展,为计算机、机器人或其他智能机器赋予人类视觉功能,成为科学家们的奋斗目标。目前,机器视觉技术已经实现了产品化、实用化,镜头、高速相机、光源、图像软件、图像采集卡、视觉处理器等相关产品功能日益完善。机器视觉领域新技术爆出,通用式三维即时视觉传感技术将为机器视觉再添浓墨重彩的一笔。
视觉传感器的工作原理
视觉传感器是指通过对摄像机拍摄到的图像进行图像处理,来计算对象物的特征量(面积、重心、长度、位置等),并输出数据和判断结果的传感器。
视觉传感器具有从一整幅图像捕获光线的数以千计的像素。图像的清晰和细腻程度通常用分辨率来衡量,以像素数量表示。因此,无论距离目标数米或数厘米远,传感器都能“看到”十分细腻的目标图像。
在捕获图像之后,鼎纳视觉传感器将其与内存中存储的基准图像进行比较,以做出分析。
视觉传感器是机器视觉系统的核心,是提取环境特征较多的信息源。它既要容纳进行轮廓测量的各种光学、机械、电子、敏感器等各方面的元器件,又要体积小、重量轻。
视觉传感器包括激光器、扫描电动机及扫描机构、角度传感器、线性CCD敏感器及其驱动板和各种光学组件。
视觉传感器的应用
视觉传感器具有成本低廉、使用简单的优点,因此它的应用领域十分广泛,包括分检、检测、计量、测量、定向等多个领域,在节省劳动力,提高工作效率上面发挥巨大作用。
在生产车间的包装作业部分经常使用到视觉传感器,视觉传感器在这里的作用主要是检查包装标签粘贴的位置是否正确,包装内产品的数量是否满足要求,或者是包装物是否存在损坏、变质的问题等等,在汽车组装业,视觉传感器也发挥了重要作用,它可以检测汽车各个部位是否完好,组装是否正确,关键部位是否安全可靠等,在装瓶也,视觉传感器能够检测瓶盖是否盖好、盖紧,瓶内是否进入杂质等,无论在那个行业,视觉传感器都大大节省了人力,提高了工作效率。
视觉传感器的发展历程
视觉传感器是50年代后期出现,发展十分迅速,是机器人中较为重要的传感器之一。机器人视觉从60年代开始首先处理积木世界,后来发展到处理桌子、椅子、台灯等室内景物,进而处理室外的现实世界。70年代后,有些实用性的视觉系统出现了,如应用于集成电路生产、精密电子产品装配、饮料罐装箱场合的检验、定位等。另外,随着这门学科的发展,一些先进的思想在人工智能、心理学、计算机图形学、图形处理等领域产生出来。
机器视觉的作用是从三维环境图像中获得所需的信息并构造出观察对象的明确而有意义的描述,视觉包括三个过程:图像获取、图像处理和图像理解。图像获取通过视觉传感器将三维环境图像转换为电信号;图像处理是指图像到图像的一种变换,如特征提取;图像理解则在处理的基础上给出环境描述。视觉传感器的核心器件是摄像管或CCD,摄像管是早期产品。OzD是后发展起来的。目前的CCD已能做到自动聚焦。
以上内容由捷配仪器仪表网小编为您整理提供,希望能帮到您,祝您工作学习愉快!
土壤水分传感器又称土壤湿度传感器,由不锈钢探针和防水探头构成,可长期埋设于土壤和堤坝内使用,对表层和深层土壤进行墒情的定点监测和在线测量。与数据采集器配合使用,可作为水分定点监测或移动测量的工具。
土壤水分传感器具有以下几种特点:
1.传感器体积小巧化设计,携带方便,安装、操作及维护简单。
2.结构设计合理,不绣钢探针保证使用寿命。
3.外部以环氧树脂纯胶体封装,密封性好,可直接埋入土壤中使用,且不受腐蚀。
4.测量精度高,性能可靠,确保正常工作。
5.响应速度快,数据传输效率高。
土壤水分传感器操作的注意事项:
①在进行测量之前应选择密度均匀的土壤作为被测对象;
②不要将传感器探针插入硬土块中,防止探针损坏;
③不可直接拽拉电缆将传感器移出土壤,用手握住环氧树脂外包装被测土壤;
④土壤水分传感器使用完毕后,用毛刷扫除探针上的土尘,并用柔软的布擦干探针,保护湿度探头干净,增加使用寿命。
土壤水分传感器适用于科学试验、节水灌溉、温室大棚、花卉蔬菜、草地牧场、土壤速测、植物培养、污水处理及各种颗粒物含水量的测量。