频谱仪是一种常用的分析仪器,主要针对于射频和微波信号进行检测,在多个领域中都有一定的应用。频谱仪在使用中有一些常见问题是需要用户注意的,今天小编就来为大家具体介绍一下频谱仪使用中的六大常见问题吧,希望可以帮助到大家。
1、怎样设置才能获得频谱仪较好的灵敏度,以方便观测小信号?
首先根据被测小信号的大小设置相应的中心频率、扫宽(span)以及参考电平;然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值;如果此时被测小信号的信噪比小于15db,就逐步减小rbw,rbw越小,频谱分析仪的底噪越低,灵敏度就越高。
如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小信号,可以减少vbw或者采用轨迹平均,平滑噪声,减小波动。
需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果准确,通常要求信噪比大于20db。
2、分辨率带宽(rbw)越小越好吗?
rbw越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。建议根据实际测试需求设rbw,在灵敏度和速度之间找到平衡点–既保证准确测量信号又可以得到快速的测量速度。
3、平均检波方式(averagetype)如何选择、power?logpower?voltage?
logpower对数功率平均、又称videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。但对”类噪声“信号会有一定的误差,比如宽带调制信号w-cdma等。
功率平均、又称rms平均,这种平均方式适合于“类噪声”信号(如、cdma)总功率测量。
电压平均、这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。
4、扫描模式的选择、sweep还是fft?
现代频谱仪的扫描模式通常都具有sweep模式和fft模式。通常在比较窄的rbw设置时,fft比sweep更具有速度优势,但在较宽rbw的条件下,sweep模式更快。
当扫宽小于fft的分析带宽时,fft模式可以测量瞬态信号;在扫宽超出频谱分析仪的fft分析带宽时,如果采用fft扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。这种类型信号包括、脉冲信号,tdma信号,fsk调制信号等。
5、检波器的选择对测量结果的影响?
peak检波方式、选取每个bucket中的最大值作为测量值。这种检波方式适合连续波信号及信号搜索测试。
sample检波方式、这种检波方式通常适用于噪声和“类噪声”信号的测试。
negpeak检波方式、适合于小信号测试,例如,emc测试。
normal检波方式、适合于同时观察信号和噪声。
6、跟踪源(tg)的作用是什么?
跟踪源是频谱分析仪上的常见选件之一。当跟踪源输出经被测件的输入端口,而此器件的输出则接到频谱仪的输入端口时,频谱仪以及跟踪源形成了一个完整的自适应扫频测量系统。跟踪源输出的信号的频率能精确地跟踪频谱分析仪的调谐频率。频谱仪配搭跟踪源选件,可以用作简易的标量网络分析,观测被测件的激励响应特性曲线,例如、器件的频率响应、插入损耗等。
频谱是频率谱密度的简称,是频率的分布曲线。复杂振荡分解为振幅不同和频率不同的谐振荡,这些谐振荡的幅值按频率排列的图形叫做频谱。
频谱仪的分类:
一般分为FFT(快速傅里叶变化)和扫频式频谱仪。其中FFT式频谱仪适合窄分析带宽,快速测量场合,扫频式频谱仪适合宽频带分析场合。
频谱仪内部原理:
1、输入衰减器
信号进入频谱仪后,先经过一个输入衰减器,作用为防止大信号进入混频器,造成混频器过载,增益压缩,畸变。衰减器雨后面的中频放大器是互动的,中频放大器补偿前面的衰减值,保证信号大小不变。
2、低通滤波器
低通滤波器决定了频谱仪的分析能力,频谱仪上标注的频率范围就是由此滤波器决定。
3、混频器
混频器,通过本振(LO)将输入信号下变频到中频。
4、中频滤波器
中频滤波器即频谱仪面板上设置的RBW,是可调的,调节RBW会影响频率选择性,信噪比和测试速度。
5、包络检波器
将中频信号转换为基带信号或者视频信号。有正向检波(显示最大值),负向检波(显示最小值),采样检波(显示中值)。
6、视频滤波器
一般为一低通滤波器,此滤波器主要是为了减少噪声的峰峰值变化,测试小信号时会用到。
一、实时带宽
1、对于示波器来说,带宽通常是其测量频率范围。而频谱仪则有中频带宽、分辨带宽等带宽定义。这里,我们以能对信号进行实时分析的实时带宽作为讨论对象。
2、对于频谱仪来说,末级模拟中频的带宽通常可以作为其信号分析的实时带宽,大多数的频谱分析的实时带宽只有几兆赫兹,通常较宽的实时带宽通常为几十兆赫兹,当然目前带宽最宽的FSW频谱仪可以达到500兆赫兹。而示波器的实时带宽为其实时取样的有效模拟带宽,一般为数百兆赫兹,高的可达数千兆赫兹。
3、这里需要指出的是,大多数的示波器在垂直刻度设置不同时,其实时带宽可能并不一致,在垂直刻度设置到最灵敏时,其实时带宽通常会下降。
4、从实时带宽来说,示波器普遍优于频谱仪,这对于某些超宽带信号分析尤其有好处,特别是在调制分析上有着无可比拟的优势。
二、动态范围
1、动态范围指标因其定义不同而有所不同,很多情况下,动态范围被描述为仪器测量最大信号和最小信号的电平差值。当改变测量设置时,仪器测量大信号和小信号的能力是不一样的,例如频谱分析仪在衰减设置不一样的情况下,其测量大信号所带来的失真是不一样的。在这里,我们讨论仪器能够同时测量大小信号的能力,即在不改变任何测量设置的情况下,示波器和频谱仪在合适设置情况下的较好动态范围。
2、对于频谱仪来说,在不考虑相位噪声等近端噪声和杂散情况下,平均噪声电平、二阶失真、三阶失真是制约动态范围的最主要因素,以主流频谱仪的技术指标计算,其理想动态范围约为90dB(受二阶失真限制)。
3、大多数的示波器由于受其AD有效取样位数和噪声底的限制,传统示波器的理想动态范围通常不超过50dB。(对于R&SRTO示波器,在100KHzRBW时,其动态范围可高达86dB)。
4、从动态范围来看,频谱仪要优于示波器。但这里要指出的是,这对于常在信号的频谱分析来说确实如此,然而示波器的频谱是同一帧数据,频谱仪的频谱大多数情况下都不是同一帧数据,因而对于瞬变信号来说,频谱仪可能无法测量到。而示波器发现瞬变信号(信号满足动态范围的情况下)的概率要大得多。
三、功率测量准确度
对于频域分析来说,功率测量准确度是非常重要的技术指标。无论是示波器还是频谱仪,对功率测量准确度的影响量都是非常多的,下面分别列出其主要的影响量:
1、对于示波器来说,功率测量准确度的影响量有:端口不匹配引起的反射、垂直系统误差、频率响应、AD量化误差、校准信号误差等。
2、对于频谱仪来说,功率测量准确度的影响量有:端口不匹配引起的反射、参考电平误差、衰减器误差、带宽转换误差、频率响应、校准信号误差等。
3、此处我们不对影响量进行逐一分析比较,我们通过对1GHz频率信号的进行功率测量来对比,通过RTO示波器和FSW频谱仪的测量对比可以看出,在1GHz处,示波器与频谱仪的功率测量值仅相差0.2dB左右,这是非常好的测量准确度指标。因为频谱仪在1GHz处的测量准确度是非常好的。
4、另外,在频率范围内,示波器的频率响应指标也是很好的,4GHz范围内不超过0.5dB,从这点来说,示波器甚至优于频谱仪的性能。
下一篇:恒温水浴的操作使用及注意事项