X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

变压器局部放电与套管连接部位电场的分析 变压器技术指标

时间:2020-08-19    来源:仪多多仪器网    作者:仪多多商城     

摘要:本文就变压器局部放电超标问题,在确定放电部位和局部放电影响因素分析的基础上,对低压套管及其连接部件构成的区域建立了简化模型并利用有限元方法进行了电场的数值分析,为解决局部放电超标问题提供了可靠数据和改进措施。
关键词:变压器 低压套管 局部放电 电场分析

  1引言

  变压器局部放电量是衡量变压器设计、制造质量的重要参数之一。当局部放电量较高时,可引起局部绝缘损伤并逐渐扩大而导致绝缘终击穿。因此,局部放电问题愈来愈受到变压器制造和运行部门的重视与关注。

  针对一台容量为75MVA、电压为110/20kV变压器,在局部放电试验时低压侧视在放电量为3000pC,高压侧视在放电量为800pC的三相局部放电测量结果严重超标问题,通过局部放电超声定位测量,初步确认放电发生在低压出线端附近。由于近距离监听到三相都有明显的放电响声,但没有发现套管外表面有放电光晕,说明放电不在外部而在内部。

  经过对低压套管及其连接部位的油箱法兰、压脚等金属部件(图1所示)的检查,未发现连接不良和金属杂质等异常情况,因此排除了悬浮放电的可能。根据低压套管放电部位的结构分析和检查情况,作者初步认为由于低压引线(高电位)与

  图1低压套管结构简图

  油箱法兰(接地体)之间的电场分布过分集中造成油中法兰拐角处*放电。为此,本文对低压套管及其连接部件构成的区域建立了简化模型并进行了两个方案电场的数值分析,为解决局部放电超标问题提供了可靠数据和改进措施。

  2放电影响因素和简化模型

  影响变压器套管局部放电的因素除了与试验时所施加的电压和时间有关外,将主要取决于套管及其连接部位的油箱法兰、压脚等的设计结构和加工制造质量,因此,引起套管局部放电的原因可以是变压器套管绝缘结构材料的性能质量包括变压器油、瓷套和裸金属电极,由于这些材料的绝缘性能不同,加上设计、工艺或制造方面的质量问题,其内部易于产生局部缺陷,如油中的气泡或杂质、金属表面加工的粗糙度或尖角毛刺、连接不良、焊缝及附在其上的焊渣等,并使套管绝缘结构中的电场分布不均匀,甚至在局部区域产生的电场过于集中,从而,发生局部放电。局部放电的产生与放电部位的电场强度及分布均匀程度等有关,因此,根据套管结构特点和局部放电影响因素,建立合理的数学物理模型十分重要。

  变压器低压套管及其连接部位的结构如图1所示。根据套管结构对称性和求解问题的关心部位,在不考虑套管偏心影响时其简化轴对称物理模型如图2所示。在图2中,根据绝缘介质的不同,分为四个子区域:即导电杆与瓷套构成的油隙区、瓷套区、瓷套与油箱及连接法兰构成的油隙区、螺栓与法兰、压板、瓷套围成的空气隙区,四个子区域的相对介电常数分别取为2.2,6.0,2.2和1.0。其中,方案1为原设计(局部放电超标),方案2为改进设计(套管外径表面喷涂铝导电层,并通过压板、螺栓与油箱法兰紧密连接而形成统一的接地体),两个方案的左右边界均为一类边界条件(左边界为高电位,右边界为地电位),上下边界取二类齐次边界条件,由此,可确定轴对称静电场的有限元数学模型及边值问题。

  3电场数值分析和处理对策

  3.1数值分析结果

  利用有限元方法,对变压器套管下部外表面喷涂铝导电层前后两个方案的电场分别进行了计算,法兰盘内径侧忽略倒圆角时的等电位线分布如图2的方案1和方案2;方案1的法兰盘内径侧倒半径为5mm圆角和10mm圆角时的等电位线分布如图3,相应的大电场强度值和发生部位列于表1。

  图2变压器套管及其下端连接部位的电场分布图

  图3变压器套管及其下端连接部位的电场分布图

  (方案1的法兰盘内径侧倒圆角5mm)
     表1 大电场强度计算结果及发生部位
     电场强度方 案 大电场强度(kV/mm) 发生部位
     方案1法兰不倒角 3.37   法兰上角处的油隙
     方案1法兰倒5mm圆角 2.18   法兰上角处的油楔
     方案1法兰倒10mm圆角 2.61    法兰上角处的油楔
     方案2(改进设计) 1.63   导电杆表面油隙

  从图2和图3中可看出,由于磁套区的介电常数远大于变压器油区的介电常数,因此,等电位线分布密集的地方为两个油隙区。原设计(方案1)的电场分布在瓷套与油箱法兰之间的油隙内较集中,其大电场强度出现在油箱法兰上部拐角处的油隙,约为3.37kV/mm,表1中计算结果表明,法兰盘内径侧是否倒圆角将直接影响大电场强度,并且,法兰盘倒圆角的大小并不是越大越好;而套管下部表面喷涂铝导电层后的改进设计(方案2)的电场分布均匀程度明显提高,使大电场强度降低为1.63kV/mm,并出现在靠近套管导电杆表面的油隙中,这主要是由于变压器套管的下部外表面喷涂铝导电层及接地后对瓷套与法兰孔间的油隙起到了电屏蔽作用。此外,若套管安装不对称或偏心,电场强度值将比上述分析结果大。

  3.2原因分析及处理对策

  从上述两个方案的计算结果可知,方案2明显优于方案1,一方面,套管改进前后的大电场强度降低了2.07倍,另一方面,电场分布均匀程度得到了明显提高,并使大电场强度的发生部位从瓷套外油箱法兰上部拐角处的油隙转移到靠近套管导电杆表面的油隙中。由于导电杆表面镀锡,其光洁度较高,而法兰盘厚度为20mm,其孔径加工较粗糙,上下边缘倒弧角过小易形成裸金属*或毛刺,使该处的电场发生畸变,从而,造成放电起始电压降低,形成油中*放电,实际变压器局部放电试验时的放电形态与响声证明了这一分析结论。因此,在瓷套局部表面通过喷涂铝导电层并使其接地的方案2大大提高了局部放电耐受能力,后的产品设计采用了方案2,并对其它影响局部放电的因素如套管安装时的同心度、油箱法兰盘的内径侧弧度等进行了严格控制,经过采取这些处理措施,使变压器局部放电量由原来的3000pC降低到100pC以下,成功地解决了由于电场集中造成的局部放电超标问题。

  4结论

  通过对变压器套管及其连接部位构成的局部放电区域建立合理的简化模型和两个方案电场的有限元分析,使改进后的套管大电场强度和发生部位有利于避免*油隙放电,从而,确定和改进了低压套管设计,为解决局部电场集中造成的变压器局部放电超标问题提供了可靠数据和分析依据。

  5参考文献

  [1]谢毓城主编电力变压器手册机械工业出版社2003.1

  [2]盛剑霓等著工程电磁场数值分析西安交通大学出版社1991.11

  [3]王建民赵志强张喜乐1200KV变压器高压引线绝缘电场的数值分析 华北电力大学学报(增刊),2002.29(5)

  [4]王晓英王建民等编著变压器故障与监测机械工业出版社2004.1

变压器几种异常声音处理方法
  “吱吱”声。当分接开关调压之后,响声加重,以双臂电桥测试其直流电阻值,均超过出厂原始数据的2%,属接触不良,系触头有污垢而引起的。

  处理方法:旋开分接开关的风雨罩,卸下锁紧螺丝,用搬手把分接开关的轴左右往复旋转10~15次,即可消除这种现象,修后立即装配还原。其次,终端杆引至跌落式熔断器的引下线采用裸铝或裸铜绞线,但张力不够,再加上瓷瓶扎线松驰所致。在黄昏和黎明时可见小火花发出“吱吱”声,这与变压器内部发出的“吱吱”声有明显区别。处理方法:利用节假日安排停电检修,将故障排除。

  “噼啪”的清脆击铁声。这是高压瓷套管引线,通过空气对变压器外壳的放电声,是变压器油箱上部缺油所致。

  处理方法:用清洁干燥的漏斗从注油器孔插入油枕里,加入经试验合格的同号变压器油(不能混油使用),补油量加至油面线温度+20℃为宜,然后上好注油器。否则,油受热膨胀会产生溢油现象。如条件允许,应采用真空注油法以排除线圈中的气泡。对未用干燥剂的变压器,应检查注油器内的排气孔是否畅通无阻,以确保安全运行。

  沉闷的“噼啪”声。这是高压引线通过变压器油而对外壳放电,属对地距离不够(<30mm)或绝缘油中含有水份。

  驱潮的方法:另从三相三线开关中接出三根380V的引线,分别接在配电变压器高压绕组A、B、C端子上,从而产生零载电流,该电流不仅流过高压线圈产生了铜损,同时也产生了磁通,磁通通过线圈芯柱、铁心上下轭铁、螺栓、油箱还产生了铁损,铜损和铁损产生的热能使变压器油、线圈、铁质部件的水份受到均匀加热而蒸发出来,均通过油枕注油器孔排出箱外。低压线圈中感应出25V的零载电压,作为油箱产生涡流发热的。从配电变压器的低压绕组a、b、c端子上,接出三根10~16mm2塑料铝芯线,分别在油箱外壳上、中、下缠绕三匝之后,均接于配电变压器低压绕组零线端子上,所产生的涡流发出的热能能使配电变压器油箱受到均匀加热,进一步提高配电变压器的干燥质量。注意,若焙烘的温度高于配电变压器的额定温度,去掉B相电源后即可降低干燥时的温度。

  “吱啦吱啦”的如磁铁吸动小垫片的响声,而变压器的监视装置、电压表、电流表、温度计的指示值均属正常。这往往由于新组装或吊芯检修时的疏忽大意,没将螺钉或铁垫上紧或掉入小号铁质部件,在电磁力作用下所致。

  处理方法:待变压器吊芯检修时加以排除。

  特殊噪声。由于负载和周围环境温度的变化,使油枕的油面线发生变化,因此,水蒸气伴随空气一并被吸入油枕内,凝成水珠,促使内部氧化生锈,随着积聚程度加剧,会落到油枕的下部。铁锈通过油枕与油盖的连通管,堆积在部分轭铁上,从而在电磁力的作用下产生振动,发出特殊噪声。这还会导致变压器运行油机械杂质增多,使油质恶化。

  处理方法:油枕与集泥器的清洁是同时进行的,应根据变压器的负荷情况,温升状况来决定。使用经验证明,两年清洁一次为好。

  继续放电声。变压器的铁心接地,一般采用吊环与油盖焊死或用铁垫脚方法。当脱焊或接触面有油垢时,导致连接处接触不良,而铁心及其夹件金属均处在线圈的电场中,从而感应出一定电位,在高压测试或投入运行时,其感应电位差超过其问的放电电压时,即会产生断续放电声。

  处理方法:吊芯检查。把接地脱焊面清除干净,重新电焊或把油泥消除至清洁为止,保持良好的接触状态。同时应以500V摇表测试,铁心与变压器外壳要接地良好。

标签: 变压器
变压器 变压器几种异常声音处理方法_变压器 【导读】通过测试变压器的绝缘电阻,可大致了解绝缘老化程度。绝缘电阻的测量,包括测量一次、二次绕组对地的绝缘电阻和一次与二次绕组之间的绝缘电阻。测试方法如下:(1



    通过测试变压器的绝缘电阻,可大致了解绝缘老化程度。绝缘电阻的测量,包括测量一次、二次绕组对地的绝缘电阻和一次与二次绕组之间的绝缘电阻。测试方法如下:

    (1)测量额定电压为1kV以上的绕组用2500V,1kV以下者用1000V或2500V兆欧表。

    (2)测量前,先将变压器套管清洁干净,以免引起泄漏电流,影响测量结果的准确性。(3)测量时非被测绕组应接地。先将变压器的外壳和高压绕组接地,测量低压绕组;再将变压器的外壳和低压绕组接地,测量高压绕组。

    (4)测量时如用手摇式兆欧表,应以120r/min速度转动手柄,使指针逐渐上升,直至指针指示稳定后再记录读数。

    (5)绝缘电阻应以变压器绕组浸于油中时所得的数值为准(指油浸式变压器),变压器注油后应静放5—6h再进行测量。把测量结果与投入运行前的数值作比较,如果下降显着(低于70%),则应进行试验,做出全面分析。

    (6)注意事项。

    ①测量应在良好天气条件下进行,且被测变压器及环境温度不宜低于5。据水电部科学研究院统计,环境温度低于5时测量结果往往不准确。

    ②测量时,环境湿度不宜大于75%,因为湿度对表面泄漏电流的影响较大,使绝缘电阻降低。

    ③每测完一次绝缘电阻后,要将电荷放尽(用导线短接接线端子);否则,第二次测量时,会有绝缘电阻增大的假象。





仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。

相关热词:

等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。



上一篇:气动切断阀和气动调节阀的区别 ...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!