气相色谱仪定性分析就是要确定各色谱峰所代表的化合物。由于各种物质在一定色谱条件下均有确定的保留值,保留值可作为一种定性指标,目前各种色谱定性方法都是基于保留值定性的。但不同物质在同一色谱条件下,可能具有相似或相同的保留值,即保留值并非专属,因此仅根据保留值对一个完全未知的样品定性是困难的。如果在了解样品来源、性质和分析目的的基础上,对样品组成作初步判断,再结合下列方法,可确定色谱峰所代表的化合物。 一、利用已知纯物质对照定性: 利用已知纯物质对照定性是基于在一定操作条件下各组分的保留时间为定值,是色谱定性分析中较为方便的方法。 纯物质对照定性仅适用于组分性质已有所了解、组成比较简单、有纯物质的未知物。 二、根据相对保留值定性: 利用保留值定性时,必须使两次分析条件完全一致,有时不易做到。有时利用相对保留值定性比利用保留值定性更方便、更可靠,只要保持柱温不变即可。利用相对保留值定性要求找一个基准物质,通常选容易得到纯品而且与被分析组分相近的物质作基准物质,如正丁烷、环己烷、正戊烷、苯、对二甲苯、环己醇和环己酮等。 三、利用已知物峰增高定性: 当未知样品中组分较多,色谱峰过密,不易辨认时,或仅作未知样品指定项目分析时,可用此法。 首先作出未知样品的色谱图,然后在未知样品中加入某已知物,又得到一个色谱图,峰高增加的组分可能为这种已知物。 四、根据保留指数定性: 保留指数表示样品在GC固定相上的保留行为,是目前使用广泛并被国际公认的GC定性指标。 1、理论基础: 正构烷烃的调整保留时间的对数(lgtr′)与其相应的碳数成线性关系。 2、计算方法: 保留指数是以正构烷烃作为标准,规定在任何色谱条件下正构烷烃的保留指数均为其分子中的碳数乘以100。待测样品的保留指数IX是与待测样品具有相同调整保留值的假想的正构烷烃中的碳数乘以100。测定时,将碳数为n和n+1的正构烷烃加到待测样品中进行色谱分析,待测样品的保留指数IX可按下式计算: IX=[n+(lgtr(X)′-lgtr(n)′)/(lgtr(n+1)′-lgtr(n)′)]×100 式中:tr(n+1)′>tr(X)′>tr(n)′ 五、利用经验规律和文献值定性: 当没有待测组分的纯标准样品时,可利用GC经验规律和文献值进行定性。 1、碳数规律: 大量实验证明,在一定温度下,同系物的调整保留时间的对数与分子中的碳原子数成线性关系,即: lgtR′=A1n+C1 式中:A1和C1均为常数,n为分子中的碳原子数(n≥3)。 根据某一同系物中两个或更多已知组分的调整保留时间的对数值,可求得同系物中其它组分的调整保留时间。 2、沸点规律: 同族中具有相同碳数碳链的异构体化合物,其调整保留时间的对数和它们的沸点成线性关系,即: lgtR′=A2Tb+C2 式中:A2和C2均为常数,Tb为组分的沸点(K)。 根据同族同碳数碳链异构体中两个或更多已知组分的调整保留时间的对数值,可求得同族中具有相同碳数的其它异构体的调整保留时间。 六、利用多柱定性: 对于复杂样品,利用多柱定性更有效、更可靠,使原来在一根色谱柱上可能出现相同保留值的两种组分,在另一根色谱柱上可能出现不同的保留值。 实验表明,同系物在两种不同固定相上保留值的对数成线性关系。 七、利用多检测器定性: 在相同的色谱条件下,同一样品在不同的检测器上有不同的响应信号,可利用检测器的选择性进行定性。 实际工作中多采用双检测器定性。双检测器可串联,也可并联。 八、利用化学反应定性: 1、利用衍生物定性: 有机物中某些难挥发、热不稳定或极性很强的物质,如酸类、糖类、醇类和胺类等,可利用各种衍生反应生成衍生物后进行定性。这样可克服直接分析的困难,使这些物质的分析变得比较容易。 对于GC可直接定性的未知物,如已初步定性,也可将未知物和标准物同时转化成衍生物,如果未知物与标准物的保留值变化一致,则可认为它们是同一物质。 2、利用消除法定性: 利用某些官能团与化学试剂反应,使样品中某组分消失而不出峰,以确定所消失的组分代表何种物质。 消失反应可以在柱上、注射器中或单独的微型反应管中进行,然后将反应物注入GC进行分析定性。 3、利用柱后流出物的化学检验定性: 收集色谱柱分离后的纯组分,利用官能团分类试剂进行检验定性。 收集方法有溶剂共冷凝收集法、溶剂结晶收集法和螺旋玻璃管冷凝收集法等。 也可将柱后馏出物直接通入盛有官能团分类试剂的检验管,利用官能团特征反应对各种馏出物进行定性。 九、利用GC与其它仪器联用定性: GC具有很强的分离能力,适合多组分混合物的定量分析,但定性分析常因没有纯物质或几种物质的保留值相近而发生困难,因此,对复杂混合物的定性分析难以做出正确判断。而质谱、红外光谱和核磁共振谱等特别适合单一组分的定性,将GC与其联用,能发挥各自的长处,可解决复杂混合物的定性问题。 联用方式有不在线和在线两种。不在线是将色谱柱分离的组分收集后,再进入其它仪器进行定性。在线是色谱柱分后的组分直接进入其它仪器进行定性。后一种发展十分迅速,目前已发展了各种形式的联用仪器,其中以色质联用比较有效,是鉴别复杂混合物强有力的工具之一。
标签: 色谱仪 色谱仪 色谱仪的定性分析_色谱仪
高速逆流色谱法于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术,与其它色谱技术不同的是它不需任何固态载体,因此能避免固相载体表面与样品发生反应而导致样品的污染、失活、变性和不可逆吸附等不良影响。
同时它也具有适用范围广、快速、进样量大、费用低、回收率高等优点。因此,己在生物、医药、食品、材料、化妆品和环保等领域获得了广泛的应用,尤其是在天然产物活性成分的分离纯化领域倍受重视。
高速逆流色谱仪原理及特点
利用了一种特殊的流体动力学(单向流体动力学平衡)现象。具体表现为一根100多米长的螺旋空管,注入互不相溶的两相溶剂中的一相作为固定相,然后作行星运动;同时不断注入另一相(流动相),由于行星运动产生的离心力场使得固定相保留在螺旋管内,流动相则不断穿透固定相;这样两相溶剂在螺旋管中实现高效的接触、混合、分配和传递。由于样品中各组分在两相中的分配比不同,因而能使样品中各组分得到分离。
应用范围广,适应性好。由于溶剂系统的组成与配比可以是无限多的,因而从理论上讲HSCCC适用于任何极性范围的样品的分离,所以在分离天然化合物方面具有其独到之处。并因不需固体载体,而消除了气液色谱中由于使用载体而带来的吸附现象,特别适用于分离极性物质和其它具有生物活性的物质。
重现性好。如果样品不具有较强的表面活性作用,酸碱性也不强,那么多次进样,其分离过程稳定性都保持很好、峰的保留相对标准偏差也小于2%,重现性相当好。
高速逆流色谱是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离效率降低。但使螺旋管的转速加快时,两相的分布发生变化。
当转速达到临界范围时,两相就会沿螺旋管长度完全分开,其中一相全部占据首端的一段,我们称这一相为首端相,另一段全部占据尾端的一段,称为尾端相。高速逆流色谱正是利用了两相的这种单向性分布特征,在高的螺旋管转动速下,如果从尾端送入首端相,它将穿过尾端相而移向首端,同样,如果从首端相送入尾相,它将穿过首端相而移向螺旋管的尾端。
分离时,在螺旋管内首先注入其中的一相(固定相),然后从合适的一端泵入移动相,让它载着样品在螺旋管中无限次的分配。仪器转速越快,固定相保留越多,分离效果越好,且大大地提高了分离速度,故称高速逆流色谱。