超声波测厚仪主要用于测量船体、汽油管道、高压容器、锅炉等的壁厚以及大面积板材厚度。被测材料可以是以钢为代表的金属类材料,也可以是塑料、尼龙等非金属材料。其原理是仪器通过探头发射超声波,在到达试件底部后反射回来被测头接收。通过计数器精确测量超声波在材料中传播的时间,按一定的公式进行计算,由显示器显示出被测厚度值。
1、仪器校准
探头和电路都有一定的信号传输时间,这一时间必须从总的传输时间中减去,这一过程被称作仪器校准。忽略这一步会导致测量结果误差很大。校准时按压仪器的校准键,给探头涂少许耦合剂并轻压在仪器自带的校准试块上,当仪器显示出说明书上标明的标准试块的厚度值时,校准完毕。更换电池和探头后,以及每次测量之前都应进行仪器校准。
2、耦合剂的选用
耦合剂是用来作为探头与被测材料之间的高频超声能量传递的。耦合剂用于排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。要根据使用情况选择合适种类的耦合剂。当使用在光滑材料表面时,可以使用低黏度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用黏度高的耦合剂。高温工件应选用高温耦合剂。并且,校准和测量时应选择同一种耦合剂。耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当测量温度较高时,耦合剂应涂在探头上。
3、被测物表面的清洁
测量前应清除被测物体表面所有的灰尘、污垢及锈蚀物,铲除油漆等覆盖物。
4、探头的选用
一般固体材料中的声速随其温度升高而降低,所以对于高温样品的测量应选用高温专用探头。铸件、奥氏体钢因组织不均匀或晶粒粗大,超声波在其中穿过时会产生严重的散射衰减,有可能使回波湮没,造成不显示。因此建议选用频率较低的粗晶专用探头(2.5MHz)。工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好),可选用小管径专用探头(6mm)。
5、大衰减材料
对于一些如纤维、多孔、粗粒子材料,它们会造成超声波的大量散射和能量衰减,以致出现反常的读数甚至无读数(通常反常的读数小于实际厚度),在这种情况下,则说明该材料不适于用此测厚仪测量。
6、材料的温度影响
材料的厚度与超声波传播速度均受温度的影响,若对测量精度要求较高时,可采用试块比对法,即用相同材料的试块在相同温度条件下进行测量,并求得温度补偿系数,用此系数修正被测工件的实测值。
钢中纵波声速具代表性的为5.900m/s(0.2320in/us),但是在漆层或类似涂层中声速一般低于2.500m/s(0.1000in/us)。常规超声设备在测量带漆层金属的总厚度时将错误地以钢的声速测量涂层,这意味着涂层将显示至少2.35倍(两种声速的比值)其真实厚度的值。
在涉及厚涂层和紧公差的情况下,由涂层引入的这种误差可以为总厚度测量的很大一部分。这个问题的解决方案是以这样一种方法----从测量中将涂层成分去除----来测量或计算厚度。 回波―回波测量简单地应用了在两个相邻底面回波间的时间间隔的成熟技术,这个时间间隔代表了透过检测材料的声波的连续往返行程时间。在那些带涂层金属的情况中,这些多次回波只能发生在金属中而不是涂层中,因此任何一对回波的间隔(底面回波1到2、底面回波2到3等),只代表了已去除涂层厚度后的金属厚度。
透过涂层测量要使用一个专利软件来确定在涂层中一个往返行程代表的时间间隔。该时间间隔用于计算和显示涂层厚度,并且通过从总测量值中减去该时间间隔,仪器也能计算和显示金属底层厚度。 上述每一种技术都有优点和缺点,对一个特定的应用都应该考虑选择哪一种方法建议:
透过涂层测量优点:
1.能测量多种金属厚度,具代表性的,在钢中能从1mm到50mm
2.只需要一个回波
3.在点蚀情况能更精确地测量剩余地最小厚度
透过涂层测量缺点:
1.涂层最薄为0.125mm
2.涂层表面应当比较光滑
3.需要使用2种特定探头中地一个
4.较高表面温度大约为50℃或51.67℃
回波-回波测量优点:
1.可使用多种普通探头工作
2.常能穿透粗糙表面涂层工作
3.用适当的探头能在接近500℃或498.89℃的高温时工作
回波-回波测量缺点:
1.需要多次底面回波,在严重腐蚀的金属中可能不存在多次底面回波
2.厚度范围比透过涂层测量限制更多
1、超声波测厚仪所测工件表面粗糙度过大,造成探头与接触面耦合效果差,反射回波低,甚至无法接收到回波信号。对于表面锈蚀,耦合效果极差的在役设备、管道等可通过砂、磨、挫等方法对表面进行处理,降低粗糙度,同时也可以将氧化物及油漆层去掉,露出金属光泽,使探头与被检物通过耦合剂能达到很好的耦合效果。
2、检测面与底面不平行,声波遇到底面产生散射,探头无法接受到底波信号。
3、工件曲率半径太小,尤其是小径管测厚时,因常用探头表面为平面,与曲面接触为点接触或线接触,声强透射率低(耦合不好)。可选用小管径专用探头,能较精确的测量管道等曲面材料。
4、探头接触面有一定磨损。常用测厚探头表面为丙烯树脂,长期使用会使其表面粗糙度增加,导致灵敏度下降,从而造成显示不正确。可选用500#砂纸打磨,使其平滑并保证平行度。如仍不稳定,则考虑更换探头。
5、铸件、奥氏体钢因组织不均匀或晶粒粗大,在其中穿过时产生严重的散射衰减,被散射的超声波沿着复杂的路径传播,有可能使回波湮没,造成不显示。可选用频率较低的粗晶专用探头。
6、超声波测厚仪所测物背面有大量腐蚀坑。由于被测物另一面有锈斑、腐蚀凹坑,造成声波衰减,导致读数无规则变化,在极端情况下甚至无读数。
7、温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100℃,声速下降1%。对于高温在役设备常常碰到这种情况。应选用高温专用探头,切勿使用普通探头。
8、层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合材料中匀速传播。对于由多层材料包扎制成的设备,测厚时要特别注意,测厚仪的示值仅表示与探头接触的那层材料厚度。
9、当材料内部存在缺陷时,显示值约为公称厚度的70%,此时可用超声波探伤仪进一步进行缺陷检测。
10、被测物体内有沉积物,当沉积物与工件声阻抗相差不大时,显示值为壁厚加沉积物厚度。
11、声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后又去测量另一种材料时,将产生错误的结果。要求在测量前一定要正确识别材料,选择合适声速。
12、金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无明显界面,但声速在两种物质的传播速度不一样,会导致最终的测量误差。
13、应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响。
①当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。
②当应力与波的传播方向不一致时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。
14、耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。
①因根据使用情况选择合适的种类,当使用在光滑材料表面时,可以使用低粘度的耦合剂;当使用在粗糙表面、垂直表面及顶表面时,应使用粘度高的耦合剂。高温工件应选用高温耦合剂。
②其次,耦合剂应适量使用,涂抹均匀,一般应将耦合剂涂在被测材料的表面,但当超声波测厚仪测量温度较高时,耦合剂应涂在探头上。
下一篇:恒温水浴的操作使用及注意事项