X射线荧光光谱是一种常用的光谱技术,既可用于材料的组成成分分析,又可用于涂层和多层薄膜厚度的测量等。能量色散X射线荧光光谱仪体系(EDXRF),这种体系如今已经具有许多不同的配置规格,既有台式配置的,又有便携的、手持式配置的。
那么该类仪器应如何选择,选择时该考量的组件有哪些呢?
(1)气氛
X射线荧光光谱仪能够分析元素周期表中的大部分元素,具体而言,从钠元素(原子序数Z=11)到铀元素(原子序数Z=92)都可以利用这种技术进行检测分析。
但是对于原子序数较低的元素(钛元素Ti,Z=22以下),空气会对检测结果产生较大影响;由低原子序数元素产生的荧光值通常更低,并且样品基体中的其它元素有可能会吸收低原子序数元素的能量辐射。
通常情况下,用于提高低原子序数元素的检测灵敏度的方法主要为将仪器的样品室抽成真空环境或者以氦气(He)冲洗样品室。
(2)探测器
新型探测器技术—硅漂移探测器(SDDs)能够提高低能量敏感度,使得X射线荧光光谱技术可以对一些低原子序数元素进行检测分析,甚至是在空气气氛中也能进行检测,例如用于测量化学镀镍涂层中磷元素(原子序数Z=15)的含量。但是,大多数的低原子序数元素的检测分析依然还需要隔离空气气氛。
在能量色散X射线荧光光谱仪中,硅探测器已经变得非常普遍;今天用到的硅探测器要么就是上面提到的硅漂移探测器,要么就是Si-PIN探测器,而比较流行的第三种探测器是一种密封的、充气的正比计数器。
对于不同的应用用途,X射线荧光光谱仪体系中探测器的选择也不尽相同——例如对于定性分析往往需要用到硅漂移探测器。
正比计数器探测器较大的半宽高(FWHM)会导致相邻元素的检测谱图严重重叠,以至于利用峰值搜索算法和/或可见光谱观察法都无法探测出其中某种或者多种成分的存在。对于一些需要鉴别元素成分的工业制造品,其质量检验结果由于发生严重重叠,难以分辨,造成难以检测。
虽然利用硅探测器也会发生谱图上的峰重叠现象,但在大多数的情况下,这些重叠峰能够被轻易的分离和识别,这些特征使得硅探测器体系极其适用于定性分析和来料检验等方面。
组成能量色散X射线荧光光谱仪的电子器件一般都非常稳定,不会影响分析精度;而无规计数误差通常对测量精度的影响较大。计数误差一般遵循泊松统计分布——每次测量获得的数据越多,测量精度越高。
硅漂移探测器具有很高的数据吞吐量,因此当测量需要多采样、高精度时可以考虑使用这种探测器;但这通常需要样品具有较高的荧光强度值。荧光强度值取决于样品——如样品类型,样品测量区域等。
在分析测量一些薄膜或者小样品时,样品的特性可能会很微小。当样品或者样品区很小(直径只有几十微米)时,探测器的立体角则会起到很大的作用。
而样品或样品区很小的情况往往都发生在测量电子元件和功能性涂层厚度等时候,这时正比计数器就成为了一种非常受欢迎的选择,因为这种探测器具有的大俘获角允许可以使用更小的准直仪。
因此,当样品谱图相对简单,含有元素只有两到三种,样品分析区域直径小到100-200微米时,正比计数器则是一个非常理想的选择。
(3)X射线源(X射线管、供电电源、滤光片、光束尺寸)
这里将一些组件都列到X射线源里面统一讨论,包括X射线管、电源供应器、滤光片、光束尺寸。
X射线管和供电电源决定了检测样品将受到的能量强度和能量分布。商业化的能量色散X射线荧光光谱仪中用到的大多数X射线管都是50KV,1mA(50W)规格的。
50KV的高电压能够提供更高的激发效率;X射线管通量可以利用灯丝电流设置进行控制。
X射线管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(也即靶材);比较常用的阳极材料有钨(W)、铑(Rh)、钼(Mo)和铬(Cr)等,其中钨(W)和铑(Rh)使用较为广泛。
钨金属能够产生更强的轫致辐射,也因此能得到更高的能量(17-30KeV)激发效率。对于低原子序数元素的激发,则通常选取铑(Rh)元素。
滤光片通常置于X射线管窗和样品之间以过滤由X射线管产生的特定能量波。滤光片主要起到两方面作用:
一是当X射线管可能会对样品中待检测元素产生影响时去除管特征谱的干扰;
二是去除光谱背景的主要来源——背散射辐射。光谱背景峰的去除能够有效提高峰/背比响应值,提高检出限。
光束尺寸通常由具有不同直径的圆形(有时也为矩形)准直器控制;准直器尺寸与准直器到样品间的距离决定了其分析领域。
X射线荧光光谱仪由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
X射线荧光光谱仪的优点都有那些?
1.分析速度高。测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。
2.X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。特别是在超软X射线范围内,这种效应更为显著。波长变化用于化学位的测定。
3.非破坏分析。在测定中不会引起化学状态的改变,也不会出现试样飞散现象。同一试样可反复多次测量,结果重现性好。
4.X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。
5.X射线荧光光谱仪分析精密度高。
6.制样简单,固体、粉末、液体样品等都可以进行分析。
X射线荧光分析技术作为一种快速分析手段,为我国的相关生产企业提供了一种可行的、低成本的、并且是及时的,检测、筛选和控制有害元素含量的有效途径;相对于其他分析方法(例如:发射光谱、吸收光谱、分光光度计、色谱质谱等),XRF具有无需对样品进行特别的化学处理、快速、方便、测量成本低等明显优势,特别适合用于各类相关生产企业作为过程控制和检测使用。
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。
X射线荧光光谱仪的工作原理:
X射线是用高速电子轰击原子的内层电子,使之处于高激发状态,同时外层的电子跃迁到缺少电子的内层轨道。在此过程中会伴随着以电磁波形式释放的能量。这种释放能量的电磁波能量大,波长小,肉眼不可见,称之为X射线。
X射线荧光的波长是以受激物质(待测物质)的原子序数为特征的,原子序数越大的物质波长越短。各种不同的元素都有本身的特征X射线荧光波长,这是用X射线荧光原理的X射线荧光光谱仪进行定性分析的依据;而元素受激发射出来的特征X射线荧光的强度则取决于该元素的含量,这是定量分析的依据。
X射线荧光光谱仪的主要组成部分是一次X射线源和样品室、分光晶体和平行光管、检测器和记录显示仪器。一次X射线源用X光管,它产生的一次X射线轰击样品表面,使样品激发出二次X射线。二次X射线经平行光管变成一束平行光以后,投射到与平行光束呈夹角θ的分光晶体晶面上。射线在分光晶体面上的反射角与平行光束的夹角为2θ。分光晶体在分析过程中是回转的,即θ是连续变化的,θ的变化会使反射光的波长随之变化,故2θ的具体值是定性分析的依据。这种变化波长的反射线投射到与分光晶体联动的检测器上,检测器便输出一个与平面分光晶体反射线强度成比例的信号,它是定量分析的依据。记录显示仪表的记录纸移动的距离与2θ有关,所以记录下来的曲线就是荧光光谱图,其横坐标是波长,纵坐标是光强。分析光谱图就可以得到定性分析和定量分析结果。