1、每日工作
(1)运营单位应每日上午、下午远程检查仪器运行状态,检查数据传输系统是否正常,如发现数据有持续异常情况,应立即前往站点进行检查。
(2)每48小时自动进行TOC、氨氮、总磷水质在线自动分析仪及COD水质在线自动监测仪、UV吸收水质在线自动监测仪的零点和量程校正。
2、每周工作
每周1~2次对监测系统进行现场维护,内容包括:
(1)检查各台自动分析仪及辅助设备的运行状态和主要技术参数,判断运行是否正常。
(2)检查自来水供应、泵取水情况,检查内部管路是否通畅,仪器自动清洗装置是否运行正常,检查各自动分析仪的进样水管和排水管是否清洁(必要时进行清洗),定期清洗水泵和过滤网。
(3)检查站点房内电路系统、通讯系统是否正常。
(4)对于用电极法测量的仪器,检查标准溶液和电极填充液,进行电极探头的清洗。
(5)若站点使用气体钢瓶,应检查载气气路系统是否密封,气压是否满足使用要求。
(6)检查各仪器标准溶液和试剂是否在有效使用期内,按相关要求定期更换标准溶液和分析试剂。
(7)观察数据采集传输仪的运行情况,并检查连接处有无损坏,对数据进行抽样检查,对比自动分析仪、数据采集传输仪及上位机接收到的数据是否一致。
3、月度工作
每月现场维护内容
(1)TOC水质在线自动分析仪
检查TOC-COD转换系数是否适用,必要时进行修正。对TOC水质在线自动分析仪载气气路的密封性、泵、管、加热炉温度等进行一次检查,检查试剂余量必要时添加或更换;检查卤素洗涤器、冷凝器水封容器、增湿器,必要时加蒸馏水。
(2)PH水质在线自动分析仪
PH水质在线自动分析用酸液清洗一次电极,检查PH电极是否钝化,必要时进行更换,对采样系统进行一次维护。
(3)COD水质在线自动监测仪
检查内部试管是否被污染,必要时进行清洗。
(4)流量计
检查超声波流量计高度是否发生变化。
(5)UV吸收水质在线自动监测仪
检验UV-COD转换曲线是否适用。必要时进行修正。
(6)氨氮水质在线自动分析仪
检查气敏电极表面是否清洁,对仪器管路进行保养、清洁。
(7)总磷水质在线自动分析仪
检查采样部分、计量单元、反应器单元、加热器单元、检测器单元的工作情况,对反应系统进行清洗。
(8)水温
进行现场水温比对试验。
(9)其他现场维护内容
每月的现场维护内容还包括对在线监测仪器进行一次保养,对水泵和取水管路、配水和进水系统、仪器分析系统进行维护。对数据存储和控制系统工作状态进行一次检查,对自动分析仪进行一次日常校验。检查监测仪器的接地情况,检查监测用房的防雷措施。
(10)每月进行一次实验室比对
除流量外,运营维护人员每月还应对每个站点所有的自动监测仪至少进行一次自动监测方法与实验室标准方法的比对试验,试验结果应满足标准的要求。
实际水样比对试验相对误差的公式:
A(%)=(Xn-Bn)/Bn×100%
A---为实际水样比对实验相对误差;
Xn---为在线仪器第n次测量值;
Bn---为对应实验室标准方法测定值;
n---比对次数。
实际水样比对实验或校验的结果不满足HJ/T355-2007表1中规定的性能指标要求时,应立即重新进行第二次比对实验或校验。连续三次结果不符合要求时,应采用备用仪器或手工法监测。备用仪器在正常使用和运行之前应进行校验和比对试验。
运营维护人员每月应对每个站点的所有自动分析仪至少进行一次质控样测试,采用国家认可的两种浓度的质控样进行测试,一种为接近实际废水浓度的质控样品,另一种为超过相应排放标准浓度的质控样品,每种样品至少测定2次,质控样测定的相对误差应小于标准值的±10%。
4、季度维护
(1)每3个月至少对TOC自动监测仪式样计量阀等进行一次清洗。检查仪器水样导管、排水导管、活塞和密封圈,必要时进行更换,检查氨氮自动监测仪气敏电极膜,必要时进行更换。
根据实际情况更换COD自动监测仪水样导管、排水导管、活塞和密封圈。
每年至少更换一次TOC自动监测仪注射器活塞、燃烧管、CO2吸收器。
(2)季度校验
每季度进行现场校验,可采用自动校准或手工校准。现场校验内容包括:重复性试验、零点漂移和量程漂移试验。
气相的气路系统,是一个载气连续运行、管路密闭的系统。气路系统的气密性,载气流速的稳定性,以及流量测量的准确性都对色谱实验结果有影响,需要注意控制。
气相色谱分析检测过程中,气相色谱仪对所用的气体纯度有较高的要求,为即达到工作要求,又能延长寿命,所用气体的纯度要达到或略高于仪器自身对气体纯度的要求;否则,若使用不符合要求的低纯度气体,会造成一系列不良影响;一般情况下,气体纯度选择应掌握以下原则,即微量分析比常量分析要求高,毛细管柱分析比填充柱分析要求高,程序升温分析比恒温分析要求高,浓度型检测器比质量型检测器要求高,配有甲烷装置的FID比单FID要求高,中高档仪器比低档仪器要求高。 气相色谱中常用的载气有:氢气、氮气、氦气、氩气和空气。 这些气体除空气可由空压机供给外,一般都由高压钢瓶供给。通常都要经过净化、稳压和控制、测量流量。
气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度可以的这类问题。
1、气体纯度的要求
根据每一家用户具体使用的哪一类(高、中、低档)仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于:①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高(保持)仪器的高灵敏度,而且会延长色谱柱、色谱仪(气路控制部件、气体过滤器)的寿命。实践证明,作为中高档仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度、高精度要求的样品时,要想恢复仪器的高灵敏度是十分困难的。而对于低档仪器,作常量或半微量分析,选用高纯度的气体,会增加运行成本,有时还增加了气路的复杂性,因此选用气体的纯度要求达到或略高于仪器自身对气体纯度的要求即可,这样既可以达到工作要求,又能延长仪器的寿命,还不至于增加仪器的运行成本。
一般说来,痕量分析或毛细管色谱的载气纯化程度,要高于常规分析。特别是电子捕获、热导池检测器,载气纯度直接影响灵敏度和稳定性,一定要严格净化。
2、气体纯度低可能造成的不良影响
根据分析对象,色谱柱的类型,操作仪器的档次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能:
2.1样品失真或消失:如H2O气使氯硅样品水解;
2.2色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG固定液断链。
2.3有时某些气体杂质和固定液相互作用而产生假峰;
2.4对柱保留特性的影响:如H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大;
2.5检测器:TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命;FID:特别是在Dt≤1×10-11/S下操作时,CH4等有机杂质会使基流激增,噪声加大不能进行微量分析;
2.6在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当柱温升高时不但引起基线漂移,还可能在谱图上出现比较宽的“假峰”。
2.7影响
2.7.1各类过滤器加速失效;
2.7.2调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵;
2.7.3气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。
2.7.4检测器的寿命
对于FID,水蒸汽会影响分析结果,直至影响检测器的寿命;对ECD和TCD的寿命最明显,这点应引起用户特别注意。
3、对气体纯度选择的一般原则
3.1从分析角度讲,微量分析比常量分析要求高,也就是说,气体中的杂质含量必须低于被分析组分的含量,如果用TCD分析10mL/m3的CO,则载气中的杂质总含量不得超过10mL/m3,因为99.999%纯度的气体则含0.001%的杂质,相当于10mL/m3所以对于10mL/m3的痕量分析,载气的纯度应高于99.999%;于FID使用气体,碳氢化合物含量必须很低,载气中的大量氧杂质只要不对色谱柱造成影响,就不影响FID的性能,而操作ECD,载气中的氧气和水的含量必须很低等。
3.2毛细管柱分析比填充柱分析要求高;
3.3程序升温分析比恒定温度分析要求高;
3.4浓度型检测器比质量型检测器要求高;
3.5配有甲烷装置的FID比单FID操作的对载气中的微量CO,CO2要求要高得多。
3.6从仪器寿命和保持仪器的高灵敏度讲,中高档仪器比低档仪器要求高。
4、操作不同检测器推荐使用的气体纯度
我们推荐气体纯度的技术要求,通常用于常规分析,对于特殊高灵敏度的痕量分析应采用高一级纯度的气体,如果不在意色谱柱和仪器的使用寿命,或分析样品组分浓度很高时,也可以不使用过高纯度的气体,由于各个制气厂设置不同,其杂质含量将有所不同;为满足不同的使用要求,选用不同厂家不同纯度的气源后,可以通过气体净化处理满足分析要求,对于不同杂质的气体采用何种净化方法和装置,留待以后再加以讨论。
综上所述,新气相接入气源时一定要做到心中有数,决不能随意接入,否则会造成色谱柱失效、检测器寿命缩短、甲烷化装置等的损坏、信噪比减小得无法使用等,最终导致分析数据严重失真,失去了分析的意义,为工作带来严重的损失。
在进行氧含量分析尤其是微量氧分析时,由于空气中氧含量高达21%O2,故而如果处理不当极易造成对样品的污染和干扰,出现分析结果数据不正确。其主要原因是氧分析仪操作不当造成。以下仅谈几点影响氧分析仪测定的因素。 1.泄漏。 氧分析仪在初次启用前必须严格检漏。氧分析仪只有在严密不漏的前提下才能获得准确的数据结果。任何连接点,焊点,阀门等处的不严密,将会导致空气中的氧反渗进入管道及氧分析仪内部,从而得出含氧量偏高的结果。 2.污染。 在重新使用氧分析仪时,首先须注意在连接氧分析仪的取样管路时是否漏入空气,并且必须认真将漏入氧分析仪的空气吹除干净,尽量不使大量氧气通过氧分析仪的传感器以延长传感器寿命。在管道系统净化过程中,为缩短净化时间,需要有一定的方法,一般使用高压放气及小流量吹除交替进行可迅速净化氧分析仪管道。 3.管道材质的选择。 氧分析仪管道材质及表面粗糙度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。氧分析仪通常选用铜管或不锈钢管,对超微量分析(指<0.1ppm)则必须用抛光过的不锈钢管。 4.气路系统的简化及洁净。 氧分析仪微量分析要求必须有效排除气路上的各种管件,阀门,表头等中的死角对样气造成的污染。因此,应尽可能简化氧分析仪气路系统,选用死角小的连接件等。并且,避免使用水封,油封及腊封等设备,防止溶解氧逸出造成污染,更需避免在样气引出至氧分析仪进口的管线上增加易造成污染的净化设备等。只有这样才能保证系统洁净,所得数据准确。
上一篇:意大利插装阀 插装阀维修保养