电子秤出现以下几种现象,需怀疑是称重传感器的故障:
(1)电子秤不显示零,显示屏不断闪烁。
(2)电子秤显示零以后,在加放砝码,不显示称量数字。
(3)电子秤空载或加载时,显示的数字不稳定,漂移或者跳变。
(4)电子秤称量不准确,显示的称量数字与加放的砝码数量不一致。
(5)电子秤重复性不好,加放同一砝码,有时称量准确,有时称量不准确。
以上几种现象都有可能是称重传感器的故障。将需要判断的传感器从系统中单独摘除,分别测量输入阻抗、输出阻抗。输入阻抗正常值为380Ω,输出阻抗正常值为350Ω,如果测量数据不在此范围内,该传感器已经损坏。如输入阻抗、输出阻抗有断路,可先检查传感器信号电缆有无断开的地方,当信号电缆完好时,则为传感器应变片被烧毁,通常是因为有大电流进入传感器造成的。当测量输入阻抗、输出阻抗阻值不稳定时,可能为信号线绝缘层破裂,绝缘性能下降,或传感器受潮,使桥路同弹性体绝缘不好。传感器的零点输出信号值,一般在(-3mv~2mv)之间。如果远远超出此标准范围,可能是传感器使用中过载而造成弹性体塑性变形,使传感器无法使用。如无零点信号或零点输出信号很小,可能为称重传感器内的应变片已从弹性体上脱落或有支撑物支撑秤体造成。
电子秤更换电子秤传感器步骤如下:
1)打开传感器(损坏的)上方盖板,用千斤顶顶起秤台,取下传感器地线。
2)打开接线盒,将损坏的传感器电缆线与接线盒解脱。在传感器端抽出电缆线。注意:在抽线时,附上一根引线穿过秤体,以便在更换新传感器时,便电缆线穿越秤体进入接线盒。
3)参照上述第二项的方法,将传感器电缆线穿越秤体进入接线盒。
4)按照接线图将电缆线各芯线固定在接线盒对应的接线柱上。
5)松开千斤顶,放平秤台,盖上盖板。
6)更换传感器后,须对汽车衡重新设定和校正。
7)传感器安装完后,其多余电缆线应扎成捆放置,不得直接放置在基础地面上。
8)为保证传感器的一致性和互换性,传感器电缆线不得随意截断。
9)安装和拆卸过程中,不得出现划伤、磕碰传感器现象,并要保护好电缆线。
土壤湿度,即表示一定深度土层的土壤干湿度程度的物理量,又称土壤水分含量。土壤湿度的高低受农田水分平衡各个分量的制约。
土壤湿度传感器
土壤湿度传感器又名土壤水分传感器,土壤含水量传感器。土壤水分传感器由不锈钢探针和防水探头构成,可长期埋设于土壤和堤坝内使用,对表层和深层土壤进行墒情的定点监测和在线测量。
与数据采集器配合使用,可作为水分定点监测或移动测量的工具测量土壤容积含水量,主要用于土壤墒情检测以及农业灌溉和林业防护。
土壤湿度表示方法
土壤湿度,即土壤的实际含水量,可用土壤含水量占烘干土重的百分数表示:土壤含水量=水分重/烘干土重×100%。也可以相当于土壤含水量与田间持水量的百分比,或相对于饱和水量的百分比等相对含水量表示。
根据土壤的相对湿度可以知道,土壤含水的程度,还能保持多少水量,在灌溉上有参考价值。土壤湿度大小影响田间气候,土壤通气性和养分分解,是土壤微生物活动和农作物生长发育的重要条件之一。
土壤湿度受大气、土质、植被等条件的影响。在野外判断土壤湿度通常用手来鉴别,一般分为四级:
(1)湿,用手挤压时水能从土壤中流出;
(2)潮,放在手上留下湿的痕迹可搓成土球或条,但无水流出;
(3)润,放在手上有凉润感觉,用手压稍留下印痕;
(4)干,放在手上无凉快感觉,粘土成为硬块。
农业气象上土壤湿度常采用下列方法与单位表示:
①重量百分数。即土壤水的重量占其干土重的百分数(%)。此法应用普遍,但土壤类型不同,相同的土壤湿度其土壤水分的有效性不同,不便于在不同土壤间进行比较。
②田间持水量百分数。即土壤湿度占该类土壤田间持水量的百分数(%)。利于在不同土壤间进行比较,但不能给出具体水量的概念。
③土壤水分贮存量。指一定深度的土层中含水的绝对数量,通常以毫米为单位,便于与降水量、蒸发量比较。土壤水分贮存量W(毫米)的计算公式为:W=0.1·h·d·w。式中h是土层厚度,d为土壤容重(克/厘米3),0.1是单位换算系数,w为土壤湿度(重量百分数)。
④土壤水势或水分势是用能量表示的土壤水分含量。其单位为大气压或焦/克。为了方便使用,可取数值的普通对数,缩写符号为pF,称为土壤水的pF值。
土壤湿度测量方法
土壤既是一种非均质的、多相的、分散的、颗粒化的多孔系统,又是一个由惰性固体、活性固体、溶质、气体以及水组成的多元复合系统,其物理特性非常复杂,并且空间变异性非常大,这就造成了土壤水分测量的难度。
土壤水分测量方法的深入研究,需要一系列与其相关的基础理论支持,尤其是土壤作为一种非均一性多孔吸水介质对其含水量测量方法的研究涉及到应用数学、土壤物理、介质物理、电磁场理论和微波技术等多种学科的并行交叉。而要实现土壤水分的快速测量又要考虑到实时性要求,这更增加了其技术难度。
土壤的特性决定了在测量土壤含水量时,必须充分考虑到土壤容重、土壤质地、土壤结构、土壤化学组成、土壤含盐量等基本物理化学特性及变化规律。
①重量法。取土样烘干,称量其干土重和含水重加以计算。
②电阻法。使用电阻式土壤湿度测定仪测定。根据土壤溶液的电导性与土壤水分含量的关系测定土壤湿度。
③负压计法。使用负压计测定。当未饱和土壤吸水力与器内的负压力平衡时,压力表所示的负压力即为土壤吸水力,再据以求算土壤含水量。
④中子法。使用中子探测器加以测定。中子源放出的快中子在土壤中的慢化能力与土壤含水量有关,借助事先标定,便可求出土壤含水量。
⑤遥感法。通过对低空或卫星红外遥感图象的判读,确定较大范围内地表的土壤湿度。
直线位移传感器被广泛应用于塑胶、切割、车辆、建筑、农业、船舶、航天等领域的各种运动控制场合。各种不同类型的传感器及数据处理器满足不同的需要,并能针对客户要求进行量体定制,给客户提供量产化产品及应用产品的技术解决方案。
位移传感器的工作原理
是跟滑动变阻器一样的,它作为分压器使用的,它是以相对的输出电压来呈现出所测量位置的实际上的位置。对这个装置的工作有下面几点要求:
1、如果电子尺已经使用很长时间了,而且密封已经老化,同时夹杂着很多杂质,而且水混合物和油会严重影响电刷的接触电阻的,这样会使显示的数字不停地跳动。这个时候可以说直线位移传感器的电子尺已经损坏了,需要更换。
2、若电源的容量很小,就会出现很多情况的,所以,供电电源需要有充分的容量。那么,容量不足,就会造成如下的情况:熔胶的运动会使合模电子尺的显示变换,有波动,或者合模的运动会使射胶电子尺的显示波动,造成测量结果误差很大。如果电磁阀的驱动电源于直线位移传感器供电电源同时在一起的时候,更容易出现以上的情况,情况严重时用万用表的电压档甚至可以测量到电压的有关波动。如果情况不是因为高频干扰、静电干扰或者是中性不够好的造成的,那么就有可能是电源的功率太小造成的。
3、调频干扰和静电干扰都有可能让位移传感器的电子尺的显示数字跳动的。电子尺的信号线与设备的强电线路要分开线槽。电子尺必须要强制性地使用接地支架,而且同时让电子尺的外壳跟地面良好地接触。信号线需要使用屏蔽线,而且电箱的一段应该跟屏蔽线接地的。如果有高频干扰的时候,通常使用万用表的电压测量就会显示正常,但是显示数字就是会跳动不停的;而出现静电干扰时,出现的情况也是跟高频干扰一样的。
要证明看是否是静电干扰时,可以先使用一段电源线把电子尺的封盖螺丝跟机器上的某一些的金属短接起来就可以了,只要一短接起来,静电干扰就会马上消除掉的。但是如果要消除掉高频干扰就很难用上面的方法了,变频节电器和机器手都经常出现高频干扰的,所以可以试一下用停止高频节电器或者机械手的方法来验证是不是高频干扰的。
4、如果直线位移传感器的电子尺在工作的过程当中,在某一点的显示数据有规律地跳动,或者是没有显示数据的时候,出现这种情况就需要检查连接线绝缘是不是出现破损的现象,并且跟机器的外壳很有规律地接触而导致的对地短路。
5、供电的电压一定要稳定,工业的电压需要符合±0.1[%]的稳定性,例如,基准电压是10V的话,就可以允许有±0.01V的波动变化,如果不是的话,就会引起显示的圈套波动这样的情况。但是如果这个时候的显示波动的幅度没有超过波动电压的波动的幅度的话,那么电子尺就是正常的了。
6、安装直线位移传感器的对中性需要很好,但是平行度可以允许有±0.5mm的误差,角度可以允许有±的误差。但是如果平行度误差和角度误差都是偏大的话,这样会出现显示数字跳动的情况。那么出现这样的情况的时候,必须要对平行度和角度进行调整了。
7、在连接的过程当中,一定要多加注意,电子尺的三条线是不可以接错的,电源线和输出线是不可以调换的。如果上面的线接错的话,就会出现线性误差很大的情况,要控制的话是很难的,控制的精度也会变得很差,而显示很容易出现跳动的现象等等。
直线位移传感器的使用
精密直线位移传感器,是带有一个长的持续传导轨迹分压计型传感器,在控制和测量运用中,适合于绝对位移传感,其线性精度为士0.05%。具有移动快,寿命长等特点,符合龙门式精密油压机的控制要求。
根据实际要求在油压机的主缸、液压垫上分别安装Kl下滑板式、KTC拉杆式直线位移传感器。在一个半自动工作过程中,油压机的主缸、液压垫分别带动两只直线位移传感器移动,将采集到的两点模拟量值输入到FX2N-8AD,FX2N-8AD将此模拟输入数值(此时是电压输入),转换成数字值,并且把他们传输到PLC主单元。主缸、液压垫选用直线位移传感器的有效测量长度为500mm、400mm。
直线位移传感器测量行程最小到10mm,最大测量行程可达4500mm的精确测量,线性精度可达0.01%,分辨率高于0.01mm,测量操作速度高达10m/s;角位移传感器可测量360°范围内的角度值,具有良好的分辨率和线性度,运行速度可达10,000rpm。其内部的导电塑料电阻组件以及多指贵金属电刷可保证1亿次以上的机械寿命,并具有优良的抗震性和温度系数。其坚固的结构设计可以保证在恶劣环境中可靠工作。