热分析仪器、技术与方法
1.热分析仪器、技术与方法
关于热分析领域新仪器和方法的发展与应用已有数篇综述[1-6],其总的发展趋势是新技术的进步,应用领域的延伸;样品重量的减少,扩散和渗透到生产线,使用计算机和机器入。在DSC,DTA领域的一个进展是调制式示差扫描量热仪、热分析仪(modulated DSC, modulated DTA)的出现[7,8]。它在传统DSC线性加热或冷却基础上叠加了一个正弦的温度加热速率,再利用傅里叶转换不断地对调幅热流进行计算,从而得到比传统DSC更多的信息,如总热流、调幅热流、可逆热流、不可逆热流及热容。同时具有高灵敏度和高分辨率,弥补丁传统DSC不能同时具备高灵敏度和高分辨率的不足。MDESC已经在高分子表征的几个方面被证实有特殊用途,包括将复杂转变分离成易解析的部分,提高检测微弱转变的灵敏度,由一个实验过程直接测量热流和比热变化。在食品方面,比如冰冻食品的加工和储存。冷冻食品的脆性,蛋白质的变性等方面都有应用。
由热分析仪与其它仪器的特长和功能相结合,实现联用分析,扩大分析内容,是现代热分析仪发展的一个趋势。已有商品化的各类联用量热仪,比如热重分析仪与叮红外分析仪,色谱仪,质谱仪的联用等。另外值得一提的是同时联用技术。它是在程序控温下,对同一试样同时采取两种或多种分析技术进行分析,其优点是显而易见的。近期发展的有紫外-可见光示差扫描热卡量热仪(DPC)、微调制热分析仪及微热机械仪等。微调制热分析仪、微热机械是原子力显微镜与微量调制热分析及热机械分析技术相结合的结果。将传统的AFM的探针用极微小的热电阻取代,同时用于加热及温度测量,以AFM分析显示材料的形貌、相应位置的热传导及热扩散区域分布和物理性质的变化。显微镜分析与热分析、热机械分析相结合为其在诸如材料科学、制药学、催化剂、薄膜、电子成分、法医科学及生物体系等领域的应用及研究提供了有力的手段。
在最近的二十年、光声及光电技术被引入量热研究,用于浓缩材料的热性质研究和各种材料、结构的热波探测[9]。在制药工业应用的反应量热仪可以通过中央个人电脑控制16个反应参数并由屏幕进行监测[10]。在微反应器中用小型化的量热仪监视热物理反应的可能性已经讨论[11]。用于测定燃料燃烧热的热弹量热仪其两个发展方向是测量及数据处理的高度自动化和无水热弹量热仪的发展[12]。动力学量热法是基于温度调制方法和绝热方法发展起来的,可以得到动力学热容数据。这是与材料的动力学相关的一个基本量,Jeong对其进展进行了综述[13]。动力学量热仪已被用于过冷液体的慢弛豫研究。自由模式动力学研究方法用于DSC研究中,提供了一种可靠的数学表达式来描述化学反应[14]。Marison对生物反应量热仪进行了综述[15]。滴定量热仪被主要应用于四个主题的研究[16]:(1)水溶液中的配对焓和溶质-溶质相互作用参数;(2)离子表面活性剂形成胶束的解体;(3)蛋白-配体相互作用[17];(4)高分子吸附剂上被吸附物的吸附。滴定量热还被用于某些反应热的测定[18]。
2.热分析方法的应用
2.1 材料,化工和炸药推进剂
DSC被用于研究无机玻璃的结构松弛过程[19],铁酸盐不锈钢结构变化[20]、金属氧化物和玻璃的热力学和化学结构[21]以及多孔材料相转变[22]、材料防火性测试[23]及气体性质研究[24]等。此外,DSC非常适合热硬化性粉末涂料性质的测定,二者被认为是完美的搭配[25]。热分析方法还被用于黑色物质(碳、焦碳和活性炭)的分析[26],研究有机添加剂对水泥水合特性的改变[27,28]等。热分析方法被认为是研究高能材料特别是推进剂稳定性的较为重要比较有前途的工具之一,被用于推进剂反应性、反应机理、储存时间以及炸药安全性等研究[29-32]。
2.2 有机化学
在有机化学,尤其是物理有机化学领域,热分析方法得到了广泛的应用。一方面被用于反应机理的研究,例如不同构型己二醇的乙酰化反应的量热研究[33],有机随机网状物中的向列型相到各向同性相的转变[34]。利用热分析方法可以测定反应的生成焓、活化能以及晶格能、张力能等热力学数据。例如系列卤化有机铵的标准摩尔生成焙和品格能[35]、含氢键的柔性有机网络的客体键合的平衡、动力学和能力学研究[36]及非平面环共扼分子的共振和张力能[37]等。Belichmeier提供了一种由DSC曲线测定有机反应活化能的简单而有效的方法[38]。另一方面,热分析仪被用于合成条件的控制。例如,用差示扫描量热仪可以方便地控制反应条件,实现杂环的合成[39]。热分析方法还被用于新合成产物的表征[40,41]以及多组份有机物质的纯度测定[42]。
2.3 高分子聚合物
在高分子领域,DSC、DTA已成为表征合成高分子的常规手段[43-47]。另一方面,还被用于高分子性质研究,如聚酯的热力学[48]、高分子填充物和有机酸的相互作用[49]、富有稀土化合物的高分子的性质[50]、氧化诱导时间[51]、细菌共聚多酯的性质[52]、工业乳剂的聚合[53]及聚合物上一些无机和有机离子的离子交换热化学[54]等。利用光差示扫描量热计还可以检测高分子的聚合效率[55]。
2.4 物理化学
量热技术,尤其是浸入和流体吸附量热法,气体吸附微量量热法在表面化学领域有着广泛的应用[56-59]。已被用于评价不同碳材料的化学性质(表面性质、亲水/疏水性、酸/碱性)和物理性质(表面积、孔径分布等)[60],研究金属纤维,真空蒸发膜和单晶的吸附性质[61],基于PEO,LiI和高表面无机氧化物的复合固态电解液的热性质[62]等。量热技术的发展对热力学的贡献是显而易见的[63-65]。它被用于超声实验[66]、薄膜反应热力学和动力学[67]、表面活性剂在固液界面的吸附和热力学[68]、无机阴离子的交换萃取和吸附反应热[69]、荷电金属氧化物/电解液界面的离子吸附的热效应[70]、混合物界面测定[71]、有机液体的热可逆性凝胶化的结构研究[72]、硝酸钠和高氯酸钠溶液在298.15K水-有机混合相中的热化学[73]以及工业中重要的聚合物和胶体在水分散中溶胶-凝胶转变[74]等。DSC是研究固体热性质的最惯用的直接测定方法。它被广泛用于计算无定性材料结晶过程的动力学参数[75]、玻璃态结晶氰基金刚烷的亚稳态[76]、无定型材料的低温性质[77]、液晶的高压性质[78]以及热容的测定[79-81]。由扫描和控压扫描量热仪可测定有机液体和聚合物在宽的压力和温度范围内的热物理性质[82]。热分析方法还是研究相平衡及相图的有力工具[83-85]。
2.5 生物化学
热分析法在生物化学领域得到了广泛的应用,并发展了专门的生物微量量热仪。热分析法被用于研究模型DNA三联体和四联体的稳定性和结构及其与小配体的相互作用[86]、脂双分子层的斜中间相的相转变[87]、测定胰岛素敏感性[88]、抗体分子剖析[89]、药物-DNA相互作[90]、肽和磷脂双分子膜的相互作用[91]、淀粉酶和相关酶的DSC,ITC[17]、蛋白质稳定性的热力学[92]、肌球蛋白和微丝蛋白的DSC研究[93]及酵母生长抑制研究[94]等。
2.6 制药、食品营养及环保
在制药领域使用DSC、TGA及TM(热显微镜)进行药物多形性和热分析[95]、药物定量控制和多形系统描述[96]、制药技术中的液晶系统分析[97]等。热分析方法还被用于食品营养领域[98-100],如热带植物生产的淀粉的物理性质和分子特点[101]、食物中蛋质、糖、脂等大分子的DSC研究[102]、并且是人体能量平衡、营养状态的评价手段之一[103]。在环保领域进行了铬对土壤中有机物质生物降解影响的量热分析[104],利用热分析结合萃取和重液分离部分确定了空气悬浮微粒中碳元素和可溶、难溶有机物的总量[105]。
DU640型核酸/蛋白分析仪由美国Backman公司生产,整体的系统设计是根据微聚焦光束技术确保能精确地测定至少5微升的样品,用于医学实验。配有强力而丰富的应用软件,具有高精确性、灵活性。波长范围:190--1100nm.基本功能:1.从标准曲线到蛋白浓度分析;2.核酸分析;3.DNA/RNA/寡核苷酸定量;4.DNA理论解链分析(Tm);5.标准动力学研究。
核酸蛋白分析仪原理基于被测组分和背景电解质的吸光度不同,当被检测组分通过检测窗时,吸光度发生变化服从朗伯-比尔定律,即在一定的实验条件下,吸光度与被测组分的浓度成正比。
核酸分析仪用于核酸蛋白检测
紫外-可见光分光光度计在生物科技中可用于测定核酸和蛋白质的浓度。
首先,核酸的基本结构单位是核苷酸。核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成。由于核酸的碱基具有共轭双键,因而有紫外吸收的性质。各种碱基、核苷和核苷酸的吸收光谱略有区别。核酸的紫外吸收峰在260nm附近,可用于测定核酸。根据260nm与280nm的吸收光度(A260)可判断核酸纯度。
再谈蛋白质,构成它的组成是氨基酸,其中的种类包含酪氨酸、苯丙氨酸和色氨酸,这几种芳香族氨基酸的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质。吸收高峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。所以,紫外吸收法是280 nm 的光吸收法,含有核酸的蛋白质溶液使用280 和260 nm 的吸收差法较好。蛋白质的稀溶液采用215 与225 nm 的吸收差法。
此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。
还有一些测定蛋白质的方法,是通过蛋白质与一些物质的作用产生颜色,然后在此有色光光谱内测定吸光度。将已知浓度的蛋白质溶液稀释几个倍数,与物质作用后作为标准品,测定吸光度做出一条曲线,然后未知溶液的浓度就可通过吸光度来得出。这些方法包括,凯氏定氮法,考马斯亮蓝法(Bradford),Folin-酚试剂法(Lowry法)和BCA法。
掌握频谱分析仪的使用及原理是非常重要的,下问通过这几点来详述一下这款仪器,希望通过此文的阅读,能够帮助到大家。 一、什么是频谱分析仪在频域内分析信号的图示测试仪。以图形方式显示信号幅度按频率的分布,即X轴表示频率,Y 二、轴表示信号幅度。 二、原理:用窄带带通滤波器对信号进行选通。 三、主要功能:显示被测信号的频谱、幅度、频率。可以全景显示,也可以选定带宽测试。 四、测量机制: 1、把被测信号与仪器内的基准频率、基准电平进行对比。因为许多测量的本质都是电平测试,如载波电平、A/V、频响、C/N、CSO、CTB、HM、CM以及数字频道平均功率等。频谱分析仪 2、波形分析:通过107选件和相应的分析软件,对电视的行波形进行分析,从而测试视频指标。如DG、DP、CLDI、调制深度、频偏等。 五、操作: (一)硬键、软键和旋钮:这是仪器的基本操作手段。 1、三个大硬键和一个大旋钮:大旋钮的功能由三个大硬键设定。按一下频率硬键,则旋钮可以微调仪器显示的中心频率;按一下扫描宽度硬键,则旋钮可以调节仪器扫描的频率宽度;按一下幅度硬键,则旋钮可以调节信号幅度。旋动旋钮时,中心频率、扫描宽度(起始、终止频率)、和幅度的dB数同时显示在屏幕上。 2、软键:在屏幕右边,有一排纵向排列的没有标志的按键,它的功能随项目而变,在屏幕的右侧对应于按键处显示什么,它就是什么按键。频谱分析仪 3、其它硬键:仪器状态(INSTRUMNTSTATE)控制区有十个硬键:RESET清零、CANFIG配置、CAL校准、AUXCTRL辅助控制、COPY打印、MODE模式、SAVE存储、RECALL调用、MEAS/USER测量/用户自定义、SGLSWP信号扫描。光标(MARKER)区有四个硬键:MKR光标、MKR光标移动、RKRFCTN光标功能、PEAKSEARCH峰值搜索。控制(CONTRL)区有六个硬键:SWEEP扫描、BW带宽、TRIG触发、AUTOCOVPLE自动耦合、TRACE跟踪、DISPLAY显示。在数字键区有一个BKSP回退,频谱分析仪数字键区的右边是一纵排四个ENTER确认键,同时也是单位键。大旋钮上面的三个硬键是窗口键:ON打开、NEXT下一屏、ZOOM缩放。大旋钮下面的两个带箭头的键STEP配合大旋钮使用作上调、下调。 (二)输入和输出接口:位于一起面板下边一排。TVIN测视频指标的信号输入口;VOLINTEN是内外一套旋钮控制、调节内置喇叭的音量和屏幕亮度;CALOUT仪器自检信号输出;300Mhz29dBmv仪器标准信号输出口;PROBEPWR仪器探针电源;IN75Ω1M—1.8G测试信号总输入口。 (三)测试准备: 1、限制性保护:规定最高输入射频电平和造成永久性损坏的最高电压值:频谱分析仪直流25V,交流峰峰值100V。 2、预热:测试须等到OVERCOLD消失。 3、自校:使用三个月,或重要测量前,要进行自校。 4、系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。配置步骤:按MODE键——CABLETVANALYZER软键——Setup软键,进入设置状态。细节为tuneconfig调谐配置:包括频率、频道、制式、电平单位。Analyzerinput输入配置:是否加前置放大器。Beatssetup拍频设置、测CTB、CSO的频点(频率偏移CTBFRQoffset、CSOFRQoffset)。GATINGYESNO是否选通测试行。C/Nsetup载噪比设置:频点(频率偏移C/NFRQoffset)、带宽。
下一篇:冷热冲击试验箱技术参数